Abstract:
A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier and colloidal silica abrasive particles dispersed in the liquid carrier. The colloidal silica abrasive particles have a permanent positive charge of at least 6 mV. About 30 percent or more of the colloidal silica abrasive particles include three or more aggregated primary particles.
Abstract:
The invention provides a chemical-mechanical polishing composition and a method of chemically-mechanically polishing a substrate with the chemical-mechanical polishing composition. The polishing composition comprises (a) abrasive particles, wherein the abrasive particles comprise zirconia, (b) at least one metal ion oxidizer, wherein the at least one metal ion oxidizer comprises metal ions of Co3+, Au+, Ag+, Pt2+, Hg2+, Cr3+, Fe3+, Ce4+, or Cu2+, and (c) an aqueous carrier, wherein the pH of the chemical-mechanical polishing composition is in the range of about 1 to about 7, and wherein the chemical-mechanical polishing composition does not contain a peroxy-type oxidizer.
Abstract:
A chemical-mechanical polishing composition includes colloidal silica abrasive particles having a chemical compound incorporated therein. The chemical compound may include a nitrogen-containing compound such as an aminosilane or a phosphorus-containing compound. Methods for employing such compositions include applying the composition to a semiconductor substrate to remove at least a portion of a layer.
Abstract:
A chemical-mechanical polishing composition includes colloidal silica abrasive particles having a chemical compound incorporated therein. The chemical compound may include a nitrogen-containing compound such as an aminosilane or a phosphorus-containing compound. Methods for employing such compositions include applying the composition to a semiconductor substrate to remove at least a portion of at least one of a copper, a copper barrier, and a dielectric layer.
Abstract:
A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier and colloidal silica abrasive particles dispersed in the liquid carrier. The colloidal silica abrasive particles have a permanent positive charge of at least 6 mV. About 30 percent or more of the colloidal silica abrasive particles include three or more aggregated primary particles.
Abstract:
A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier, a colloidal silica abrasive dispersed in the liquid carrier and having a permanent positive charge of at least 6 mV, an amine containing polymer in solution in the liquid carrier, and an iron containing accelerator. A method for chemical mechanical polishing a substrate including a tungsten layer includes contacting the substrate with the above described polishing composition, moving the polishing composition relative to the substrate, and abrading the substrate to remove a portion of the tungsten from the substrate and thereby polish the substrate.
Abstract:
A chemical-mechanical polishing composition includes colloidal silica abrasive particles having a chemical compound incorporated therein. The chemical compound may include a nitrogen-containing compound such as an aminosilane or a phosphorus-containing compound. Methods for employing such compositions include applying the composition to a semiconductor substrate to remove at least a portion of at least one of a copper, a copper barrier, and a dielectric layer.
Abstract:
A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier, a colloidal silica abrasive dispersed in the liquid carrier and having a permanent positive charge of at least 6 mV, an amine containing polymer in solution in the liquid carrier, and an iron containing accelerator. A method for chemical mechanical polishing a substrate including a tungsten layer includes contacting the substrate with the above described polishing composition, moving the polishing composition relative to the substrate, and abrading the substrate to remove a portion of the tungsten from the substrate and thereby polish the substrate.
Abstract:
Disclosed are a polishing composition and method of polishing a substrate. The composition has low-load (e.g., up to about 0.1 wt. %) of abrasive particles. The polishing composition also contains water and at least one anionic surfactant. In some embodiments, the abrasive particles are alpha alumina particles (e.g., coated with organic polymer). The polishing composition can be used, e.g., to polish a substrate of weak strength such as an organic polymer. An agent for oxidizing at least one of silicon and organic polymer is included in the composition in some embodiments.
Abstract:
Disclosed are a polishing composition and method of polishing a substrate. The composition has low-load (e.g., up to about 0.1 wt. %) of abrasive particles. The polishing composition also contains water and at least one anionic surfactant. In some embodiments, the abrasive particles are alpha alumina particles (e.g., coated with organic polymer). The polishing composition can be used, e.g., to polish a substrate of weak strength such as an organic polymer. An agent for oxidizing at least one of silicon and organic polymer is included in the composition in some embodiments.