Abstract:
A level shifter includes a level shifter module that receives a first input signal having high and low states and at least one voltage supply signal, and that generates a latch control signal based on the high and low states of the first input signal. A latch module receives the latch control signal, a data input signal, and the at least one voltage supply signal. The latch module selectively stores data associated with the data input signal based on the latch control signal. The latch module selectively changes the at least one voltage supply signal from a first level to a second level and outputs the data according to the second level based on the latch control signal.
Abstract:
A method comprises providing a first conductive region, arranging a second conductive region adjacent to and insulated from the first conductive region by a dielectric region, arranging a third region adjacent to and insulated from the second conductive region, and adjusting mechanical stress to at least one of the first conductive region and the second conductive region.
Abstract:
A system includes an input that receives a control signal and a program module that initializes a nonvolatile multilevel memory cell based on the control signal. The program module initializes the nonvolatile multilevel memory cell by programming the nonvolatile multilevel memory cell to one of S states of the nonvolatile multilevel memory cell, where S is an integer greater than 1. The one of the S states is different than a lowest one of the S states.
Abstract:
A sensing amplifier for a memory cell comprises a selection stage that outputs one of a reference current and a memory cell current during a first period and the other of the reference current and the memory cell current during a second period. The first period and the second period are non-overlapping. An input stage generates a first current based on the one of the reference current and the memory cell current during the first period and generates a second current based on the other of the reference current and the memory cell current during the second period. A sensing stage senses a first value based on the first current and stores the first value during the first period, senses a second value based on the second current during the second period and compares the first value to the second value.
Abstract:
A RF structure including a semiconductor chip with an RF element having an RF core with two electrically connected chip pads, including a chip carrier having two carrier pads connected to the two chip pads and including an antenna connected to the carrier pads and electrically connected to the chip pads and to the RF core. The antenna is formed of wires, printed conductors, seal rings or other structures on, below or above the top plane of the semiconductor chip. A primary element is provided where the RF element is a secondary element. The primary element occupies a primary region and the RF core of the secondary element occupies a secondary region where the secondary region is much smaller than the primary region. The RF core secondary region is formed with the same native processing as used for the primary element.
Abstract:
A memory device, a memory array and a method of arranging memory devices and arrays. The memory device includes a memory region including a plurality of memory cells, each memory cell with a source, a drain and a channel between the source and the drain, a channel dielectric, a charge storage region and an electrically alterable conductor-material system in proximity to the charge storage region. The memory device includes a plurality of conductor lines. The memory includes a non-memory region having embedded logic including a plurality of transistors, each transistor for electrically coupling one of the conductor lines and each transistor including a transistor source, a transistor drain and a transistor gate.
Abstract:
A method of providing a memory cell includes providing a body of a semiconductor material having a first conductivity type, arranging a filter of a conductor-filter system in contact with a first conductor of the conductor-filter system, arranging at least portion of a second conductor of a conductor-insulator system in contact with the filter, arranging a first insulator of the conductor-insulator system in contact with the second conductor at an interface, arranging a first region spaced from the second conductor, arranging a channel of the body between the first region and the second conductor, arranging a second insulator adjacent to the first region, arranging a charge storage region between the first and the second insulators, arranging a first portion of a word-line adjacent to and insulated from the charge storage region, and arranging a second portion of the word-line adjacent to and insulated from the body.
Abstract:
NVM arrays include rows and columns of NVM cells comprising a floating gate and a four transistor storage element. Supply voltage for selected storage elements is turned off during a programming and an erase mode. Isolation transistors for each NVM cell or for each row of NVM cells may be used to control the supply voltage.
Abstract:
A RF structure including a semiconductor chip with an RF element having an RF core with two electrically connected chip pads, including a chip carrier having two carrier pads connected to the two chip pads and including an antenna connected to the carrier pads and electrically connected to the chip pads and to the RF core. The antenna is formed of wires, printed conductors, seal rings or other structures on, below or above the top plane of the semiconductor chip. A primary element is provided where the RF element is a secondary element. The primary element occupies a primary region and the RF core of the secondary element occupies a secondary region where the secondary region is much smaller than the primary region. The RF core secondary region is formed with the same native processing as used for the primary element.
Abstract:
A nonvolatile memory cell is provided. The memory cell includes a storage transistor and an injector in a well of an n-type conductivity. The well is formed in a semiconductor substrate of a p-type conductivity. The storage transistor comprises a source, a drain, a channel, and a charge storage region. The source and the drain are formed in the well and having the p-type conductivity with the channel of the well defined therebetween. The charge storage region is disposed over and insulated from the channel region by an insulator. Further provided are methods operating the memory cell, including means for injecting electrons from the channel through the insulator onto the charge storage region and means for injecting holes from the injector through the well through the channel through the insulator onto the charge storage region. The memory cell can be implemented in a conventional logic CMOS process.