Abstract:
Apparatus for delivering a medical device to a location in a patient's body includes an elongate catheter body having a proximal end and a distal end, a pod coupled with the distal end of the catheter body and adapted to house the medical device during delivery to the location and to open to release the medical device, and at least one distal actuator coupled with at least one of the pod and the medical device. The distal actuator is adapted to promote opening of the pod. A method involves advancing a pod at the distal end of an elongate catheter to the location within the body and activating an actuator coupled with the pod and/or the medical device to cause the pod to open. Opening the pod releases the medical device.
Abstract:
Foley type catheter embodiments for sensing physiologic data from a urinary tract of a patient are disclosed. The system includes the catheter and a data processing apparatus and methods for sensing physiologic data from the urinary tract. Embodiments may also include a pressure sensor having a pressure interface at a distal end of the catheter, a pressure transducer at a proximal end, and a fluid column disposed between the pressure interface and transducer. When the distal end is residing in the bladder, the pressure transducer can transduce pressure impinging on it into a chronological pressure profile, which can be processed by the data processing apparatus into one or more distinct physiologic pressure profiles, for example, peritoneal pressure, respiratory rate, and cardiac rate. At a sufficiently high data-sampling rate, these physiologic data may further include relative pulmonary tidal volume, cardiac output, relative cardiac output, and absolute cardiac stroke volume.
Abstract:
Apparatus for the treatment or prevention of osteopenia and osteoporosis, stimulating bone growth, preserving or improving bone mineral density, and inhibiting adipogenesis are described herein.
Abstract:
A device and methods for treating renal failure are disclosed. One embodiment of the device is an implantable peritoneal dialysis device. When in use, the device can have a semi-permeable reservoir implanted in the peritoneal cavity. The reservoir can receive blood waste and drain through one or more conduits, via a pump, to the biological bladder. Solids and/or a solution benefiting dialysis can be pumped to the reservoir and/or implanted in the peritoneal cavity.
Abstract:
In certain variations, systems and/or methods for electromagnetic induction therapy are provided. One or more ergonomic or body contoured applicators may be included. The applicators include one or more conductive coils configured to generate an electromagnetic or magnetic field focused on a target nerve, muscle or other body tissues positioned in proximity to the coil. One or more sensors may be utilized to detect stimulation and to provide feedback about the efficacy of the applied electromagnetic induction therapy. A controller may be adjustable to vary a current through a coil to adjust the magnetic field focused upon the target nerve, muscle or other body tissues based on the feedback provide by a sensor or by a patient. In certain systems or methods, pulsed magnetic fields may be intermittently applied to a target nerve, muscle or tissue without causing habituation.
Abstract:
An implantable fluid management device, designed to drain excess fluid from a variety of locations in a living host into a second location within the host, such as the bladder of that host. The device may be used to treat ascites, chronic pericardial effusions, normopressure hydrocephalus, hydrocephalus, pulmonary edema, or any fluid collection within the body of a human, or a non-human mammal.
Abstract:
Methods, devices and systems facilitate gastric retention of a variety of therapeutic devices. devices generally include a support portion for preventing the device from passing through the pyloric valve or esophagus wherein a retaining member may optionally be included on the distal end of the positioning member for further maintaining a position of the device in the stomach. Some embodiments are deliverable into the stomach through the esophagus, either by swallowing or through a delivery tube or catheter. Some embodiments are fully reversible. Some embodiments self-expand within the stomach, while others are inflated or otherwise expanded.
Abstract:
Methods, devices and systems facilitate intermittent and/or partial obstruction of a pyloric valve. Devices generally include a support portion for preventing the device from passing through the pyloric valve and a tissue engagement portion for contacting tissue adjacent the pyloric valve to obstruct the valve. Some embodiments also include a positioning member extending from the tissue engagement portion for helping position the device for obstructing the valve. A retaining member may optionally be included on the distal end of the positioning member for further maintaining a position of the device in the stomach. Some embodiments are deliverable into the stomach through the esophagus, either by swallowing or through a delivery tube or catheter. Some embodiments are fully reversible. Some embodiments self-expand within the stomach, while others are inflated or otherwise expanded.
Abstract:
An automated therapy system having an infusion catheter; a sensor adapted to sense a patient parameter; and a controller communicating with the sensor and programmed to control flow output from the infusion catheter into a patient based on the patient parameter without removing fluid from the patient. The invention also includes a method of controlling infusion of a fluid to a patient. The method includes the following steps: monitoring a patient parameter with a sensor to generate a sensor signal; providing the sensor signal to a controller; and adjusting fluid flow to the patient based on the sensor signal without removing fluid from the patient.
Abstract:
In certain variations, systems and/or methods for electromagnetic induction therapy are provided. One or more ergonomic or body contoured applicators may be included. The applicators include one or more conductive coils configured to generate an electromagnetic or magnetic field focused on a target nerve, muscle or other body tissues positioned in proximity to the coil. One or more sensors may be utilized to detect stimulation and to provide feedback about the efficacy of the applied electromagnetic induction therapy. A controller may be adjustable to vary a current through a coil to adjust the magnetic field focused upon the target nerve, muscle or other body tissues based on the feedback provide by a sensor or by a patient. In certain systems or methods, pulsed magnetic fields may be intermittently applied to a target nerve, muscle or tissue without causing habituation.