-
公开(公告)号:US20220155328A1
公开(公告)日:2022-05-19
申请号:US17538518
申请日:2021-11-30
申请人: EMULATE, Inc.
发明人: JOSIAH SLIZ , Daniel Levner , Brian Zuckerman , Norman Wen , Jonathan Rubins , Tanvi Shroff , Christopher David Hinojosa , Grace Ahn , Victor Antontsev , Jefferson Puerta , David Conegliano , S. Jordan Kerns
摘要: The present invention is related to the field of microfluidics and compound distribution within microfluidic devices and their associated systems. In one embodiment, present invention aims to solve the problem of molecule and compound absorbency into the materials making up laboratory equipment, microfluidic devices and their related infrastructure, without unduly restricting gas transport within microfluidic devices.
-
公开(公告)号:US10989721B2
公开(公告)日:2021-04-27
申请号:US15648162
申请日:2017-07-12
申请人: Emulate Inc.
发明人: Daniel Levner , Christopher David Hinojosa , Norman Wen , Jacob Fraser , Justin Nguyen , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Hyoungshin Park , Antonio Varone , Andries Van der Meer , Monicah Otieno , David Conegliano
摘要: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
-
公开(公告)号:US12019083B2
公开(公告)日:2024-06-25
申请号:US17834165
申请日:2022-06-07
申请人: EMULATE, Inc.
发明人: Josiah Sliz , Daniel Levner , Brian Zuckerman , Norman Wen , Jonathan Rubins , Tanvi Shroff , Christopher David Hinojosa , Grace Ahn , Victor Antontsev , Jefferson Puerta , David Conegliano , S. Jordan Kerns
CPC分类号: G01N35/00584 , B01L3/502761 , C12Q3/00 , G01N15/06 , G01N33/5008 , B01L3/502707 , B01L2200/0647 , B01L2200/148 , B01L2300/0681 , B01L2300/069 , B01L2300/10 , B01L2400/0406 , G01N2035/00544 , G01N2035/0097
摘要: The present invention is related to the field of microfluidics and compound distribution within microfluidic devices and their associated systems. In one embodiment, present invention aims to solve the problem of molecule and compound absorbency into the materials making up laboratory equipment, microfluidic devices and their related infrastructure, without unduly restricting gas transport within microfluidic devices.
-
公开(公告)号:US20220334139A1
公开(公告)日:2022-10-20
申请号:US17834165
申请日:2022-06-07
申请人: EMULATE, Inc.
发明人: Josiah Sliz , Daniel Levner , Brian Zuckerman , Norman Wen , Jonathan Rubins , Tanvi Shroff , Christopher David Hinojosa , Grace Ahn , Victor Antontsev , Jefferson Puerta , David Conegliano , S. Jordan Kerns
摘要: The present invention is related to the field of microfluidics and compound distribution within microfluidic devices and their associated systems. In one embodiment, present invention aims to solve the problem of molecule and compound absorbency into the materials making up laboratory equipment, microfluidic devices and their related infrastructure, without unduly restricting gas transport within microfluidic devices.
-
公开(公告)号:US10908171B2
公开(公告)日:2021-02-02
申请号:US15648000
申请日:2017-07-12
申请人: Emulate Inc.
发明人: Daniel Levner , Christopher David Hinojosa , Norman Wen , Jacob Fraser , Justin Nguyen , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Hyoungshin Park , Antonio Varone , Andries Van der Meer , Monicah Otieno , David Conegliano
摘要: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
-
公开(公告)号:US20210062129A1
公开(公告)日:2021-03-04
申请号:US16983850
申请日:2020-08-03
申请人: EMULATE, INC.
发明人: Janna Nawroth , Riccardo Barrile , David Conegliano , Remi Villenave , Carolina Carolina , Justin Nguyen , Antonio Varone , Catherine Karalis , Geraldine Hamilton
摘要: An in vitro microfluidic “organ-on-chip” device is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a stem cell-based Lung-on-Chip is described. This in vitro microfluidic system can be used for modeling differentiation of cells on-chip into lung cells, e.g., a lung (Lung-On-Chip), bronchial (Airway-On-Chip; small-Airway-On-Chip), alveolar sac (Alveolar-On-Chip), etc., for use in modeling disease states of derived tissue, i.e. as healthy, pre-disease and diseased tissues. Additionally, stem cells under differentiation protocols for deriving (producing) differentiated lung cells off-chips may be seeded onto microfluidic devices at any desired point during the in vitro differentiation pathway for further differentiation on-chip or placed on-chip before, during or after terminal differentiation. Additionally, these microfluidic “stem cell-based Lung-on-Chip” allow identification of cells and cellular derived factors driving disease states in addition to drug testing for diseases, infections and for reducing inflammation effecting lung alveolar and/or epithelial regions. Further, fluidic devices are provided seeded with primary alveolar cells for use in providing a functional Type II and Type I cell layer, wherein Type II cells express and secrete surfactants, such as Surfactant B (Surf B; SP-B) and Surfactant C (Surf C; SP-C), which were detectable at the protein level by antibody staining in Type II cells. A number of uses are contemplated for the devices and cells, including but not limited to, for use under inflammatory conditions, in drug development and testing, and for individualized (personalized) medicine. Moreover, an ALI-M was developed for supporting multiple cell types in co-cultures with functional Type II and Type I cells.
-
公开(公告)号:US12098352B2
公开(公告)日:2024-09-24
申请号:US16983850
申请日:2020-08-03
申请人: EMULATE, INC.
发明人: Janna Nawroth , Riccardo Barrile , David Conegliano , Remi Villenave , Carolina Lucchesi , Justin Nguyen , Antonio Varone , Catherine Karalis , Geraldine Hamilton
CPC分类号: C12M23/16 , B01L3/5027 , C12N5/0688 , C12N5/0696 , C12N2501/115 , C12N2501/117 , C12N2501/119 , C12N2501/155 , C12N2501/41 , C12N2502/1323 , C12N2502/27 , C12N2503/04 , C12N2506/02 , C12N2513/00 , G01N2800/12
摘要: An in vitro microfluidic “organ-on-chip” device is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a stem cell-based Lung-on-Chip is described. This in vitro microfluidic system can be used for modeling differentiation of cells on-chip into lung cells, e.g., a lung (Lung-On-Chip), bronchial (Airway-On-Chip; small-Airway-On-Chip), alveolar sac (Alveolar-On-Chip), etc., for use in modeling disease states of derived tissue, i.e. as healthy, pre-disease and diseased tissues. Additionally, stem cells under differentiation protocols for deriving (producing) differentiated lung cells off-chips may be seeded onto microfluidic devices at any desired point during the in vitro differentiation pathway for further differentiation on-chip or placed on-chip before, during or after terminal differentiation.
-
公开(公告)号:US11150255B2
公开(公告)日:2021-10-19
申请号:US15648182
申请日:2017-07-12
申请人: Emulate Inc.
发明人: Daniel Levner , Christopher David Hinojosa , Norman Wen , Jacob Fraser , Justin Nguyen , Riccardo Barrile , Geraldine Hamilton , Catherine Karalis , Hyoungshin Park , Antonio Varone , Andries Van der Meer , Monicah Otieno , David Conegliano
IPC分类号: G01N33/00 , G01N33/86 , B01L3/00 , C12M3/06 , C12M1/00 , C12M1/42 , C12M1/34 , G01N33/543 , G01N33/80
摘要: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
-
公开(公告)号:US20210115406A1
公开(公告)日:2021-04-22
申请号:US17088828
申请日:2020-11-04
申请人: EMULATE, INC.
发明人: S. Jordan Kerns , Catherine Karalis , Janna Nawroth , Remi Villenave , Jenifer Obrigewitch , Doris Roth , Michael Salmon , Athanasia Apostolou , David Conegliano
摘要: The present invention relates to a combination of microbes, cell culture systems and microfluidic fluidic systems for use in providing a human Intestine On-Chip with optimal intestinal motility. More specifically, in some embodiments, a microfluidic chip containing intestinal epithelial cells co-cultured with intestinal endothelial cells in the presence of bacteria, such as probiotic bacteria, may find use in providing an Intestine-On-Chip for testing intestinal motility function. In some embodiments, an Intestine On-Chip may be used for identifying (testing) therapeutic compounds continuing probiotic microbes or compounds for inducing intestinal motility for use in treating gastrointestinal disorders or diseases related to intestinal function.
-
-
-
-
-
-
-
-