Abstract:
Approaches for providing a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. A previously deposited amorphous carbon layer can be removed from over a mandrel that has been previously formed on a subset of a substrate, such as using a photoresist. A pad hardmask can be formed over the mandrel on the subset of the substrate. This formation results in the subset of the substrate having the pad hardmask covering the mandrel thereon and the remainder of the substrate having the amorphous carbon layer covering the mandrel thereon. This amorphous carbon layer can be removed from over the mandrel on the remainder of the substrate, allowing a set of fins to be formed therein while the amorphous carbon layer keeps the set of fins from being formed in the portion of the substrate that it covers.
Abstract:
Approaches for providing a substrate having a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device comprises a finned substrate, and a planar metrology pad formed on the substrate adjacent the fins in a metrology measurement area of the FinFET device. Processing steps include forming a first hardmask over the substrate, forming a photoresist over a portion of the first hardmask in the metrology measurement area of the FinFET device, removing the first hardmask in an area adjacent the metrology measurement area remaining exposed following formation of the photoresist, patterning a set of openings in the substrate to form the set of fins in the FinFET device in the area adjacent the metrology measurement area, depositing an oxide layer over the FinFET device, and planarizing the FinFET device to form the planar metrology pad in the metrology measurement area.
Abstract:
Approaches for providing a substrate having a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device comprises a finned substrate, and a planar metrology pad formed on the substrate adjacent the fins in a metrology measurement area of the FinFET device. Processing steps include forming a first hardmask over the substrate, forming a photoresist over a portion of the first hardmask in the metrology measurement area of the FinFET device, removing the first hardmask in an area adjacent the metrology measurement area remaining exposed following formation of the photoresist, patterning a set of openings in the substrate to form the set of fins in the FinFET device in the area adjacent the metrology measurement area, depositing an oxide layer over the FinFET device, and planarizing the FinFET device to form the planar metrology pad in the metrology measurement area.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes depositing an organic dielectric material overlying a semiconductor substrate for forming an organic interlayer dielectric (OILD) layer. An opening is formed in the OILD layer and a conductive metal fill is deposited in the opening for forming a metal line and/or a via.
Abstract:
Embodiments of the present invention provide a semiconductor structure for BEOL (back end of line) integration. A directed self assembly (DSA) material is deposited and annealed to form two distinct phase regions. One of the phase regions is selectively removed, and the remaining phase region serves as a mask for forming cavities in an underlying layer of metal and/or dielectric. The process is then repeated to form complex structures with patterns of metal separated by dielectric regions.
Abstract:
Approaches for providing a substrate having a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device comprises a finned substrate, and a planar metrology pad formed on the substrate adjacent the fins in a metrology measurement area of the FinFET device. Processing steps include forming a first hardmask over the substrate, forming a photoresist over a portion of the first hardmask in the metrology measurement area of the FinFET device, removing the first hardmask in an area adjacent the metrology measurement area remaining exposed following formation of the photoresist, patterning a set of openings in the substrate to form the set of fins in the FinFET device in the area adjacent the metrology measurement area, depositing an oxide layer over the FinFET device, and planarizing the FinFET device to form the planar metrology pad in the metrology measurement area.
Abstract:
Embodiments of the present invention provide a semiconductor structure for BEOL (back end of line) integration. A directed self assembly (DSA) material is deposited and annealed to form two distinct phase regions. One of the phase regions is selectively removed, and the remaining phase region serves as a mask for forming cavities in an underlying layer of metal and/or dielectric. The process is then repeated to form complex structures with patterns of metal separated by dielectric regions.
Abstract:
Embodiments of the present invention provide a semiconductor structure for BEOL (back end of line) integration. A directed self assembly (DSA) material is deposited and annealed to form two distinct phase regions. One of the phase regions is selectively removed, and the remaining phase region serves as a mask for forming cavities in an underlying layer of metal and/or dielectric. The process is then repeated to form complex structures with patterns of metal separated by dielectric regions.
Abstract:
This disclosure is directed to an integrated circuit (IC) structure. The IC structure may include a semiconductor structure including two source/drain regions; a metal gate positioned on the semiconductor structure adjacent to and between the source/drain regions; a metal cap with a different metal composition than the metal gate and having a thickness in the range of approximately 0.5 nanometer (nm) to approximately 5 nm positioned on the metal gate; a first dielectric cap layer positioned above the semiconductor structure; an inter-layer dielectric (ILD) positioned above the semiconductor structure and laterally abutting both the metal cap and the metal gate, wherein an upper surface of the ILD has a greater height above the semiconductor structure than an upper surface of the metal gate; a second dielectric cap layer positioned on the ILD and above the metal cap; and a contact on and in electrical contact with the metal cap.
Abstract:
Methods of forming an interconnect of an IC are disclosed. The methods etch a wire trench opening partially into an ILD layer using a hard mask, and form a metal liner sidewall spacer on sidewalls of the wire trench opening, prior to etching via openings that create a via-wire opening with the wire trench opening. The metal liner sidewall spacer protects against chamfering during the via etch and/or removal of an etch stop layer over conductive structures in an underlying ILD layer. In one embodiment, a barrier liner is deposited over the metal liner sidewall spacer, creating a double layered sidewall spacer on the sidewalls of the wire trench opening portion of the via-wire opening. A conductor is deposited to form a unitary via-wire conductive structure. An interconnect includes the double layered sidewall spacer on the sidewalls of a wire trench opening portion of the via-wire conductive structure.