Abstract:
Aspects of the present disclosure include a semiconductor device which includes a dielectric layer deposited over a conductive region and an interconnect electrically connecting the conductive region with a top surface of the dielectric layer. The interconnect includes a barrier layer extending from an interior of the dielectric layer to the conductive region and covering the conductive region. The barrier layer encases a cobalt plug. The interconnect includes a tungsten cap on an upper surface of the cobalt plug. The tungsten cap is coplanar with an upper surface of the dielectric layer. A method of manufacturing the semiconductor device is also provided.
Abstract:
Transistors with self-aligned source/drain regions and methods for making the same. The methods include forming a gate structure embedded in a recess in a substrate; removing substrate material around the gate structure to create self-aligned source and drain recesses; forming a channel layer over the gate structure and the source and drain recesses; and forming source and drain contacts in the source and drain recesses. The source and drain contacts extend above the channel layer.
Abstract:
A low gate resistance high-k metal gate transistor device is formed by providing a set of gate stacks (e.g., replacement metal gate (RMG) stacks) in a trench on a silicon substrate. The gate stacks in the trench may have various layers such as: a high-k layer formed over the substrate; a barrier layer (formed over the high-k layer; a p-type work function (pWF) layer formed over the barrier layer; and an n-type work function (nWF) layer formed over the pWF layer. The nWF layer will be subjected to a nitrogen containing plasma treatment to form a nitridized nWF layer on the top surface, and an Al containing layer will then be applied over the gas plasma treated layer. By utilizing a gas plasma treatment, the gap within the trench may remain wider, and thus allow for improved Al fill and reflow at high temperature (400° C.-480° C.) subsequently applied thereto.
Abstract:
A cobalt contact includes a dual silicide barrier layer. The barrier layer, which may be formed in situ, includes silicides of titanium and cobalt, and provides an effective adhesion layer between the cobalt contact and a conductive device region such as the source/drain junction of a semiconductor device, eliminating void formation during a metal anneal.
Abstract:
A method for forming a precision resistor or an e-fuse structure where tungsten silicon is used. The tungsten silicon layer is modified by implanting nitrogen into the structure.
Abstract:
Various embodiments include methods and integrated circuit structures. In some cases, a method of forming an integrated circuit structure can include: forming an opening in a low-k dielectric layer; filling the opening with a high-k dielectric material; patterning the low-k dielectric layer outside of the opening and the high-k dielectric layer to form an interconnect opening within the low-k dielectric layer and a capacitor opening within the high-k dielectric layer; and filling the interconnect opening and the capacitor opening with a metal to form an interconnect in the low-k dielectric layer and a capacitor in the high-k dielectric layer.
Abstract:
A method includes forming an n-FET device and a p-FET device on a substrate, each of the n-FET device and the p-FET device include a metal gate stack consisting of a titanium-aluminum carbide (TiAlC) layer above and in direct contact with a titanium nitride (TiN) cap, and removing, from the p-FET device, the TiAlC layer selective to the TiN cap. The removal of the TiAlC layer includes using a selective TiAlC to TiN wet etch chemistry solution with a substantially high TiAlC to TiN etch ratio such that the TiN cap remains in the p-FET device.
Abstract:
A method for forming a precision resistor or an e-fuse structure where tungsten silicon is used. The tungsten silicon layer is modified by implanting nitrogen into the structure.
Abstract:
A method for forming a precision resistor or an e-fuse structure where tungsten silicon is used. The tungsten silicon layer is modified by changing the crystalline structure to a tetragonal tungsten silicon layer.
Abstract:
Semiconductor chips with curable out of specification measured values of an anneal-activated parameter are identified at a test step. A plurality of anneal plans are generated to include at least one of the identified semiconductor chips. A net yield improvement is calculated for each anneal plan. Each anneal plan includes the paths of a laser beam across the wafer to be irradiated, and optionally includes an azimuthal angle of the wafer as a function of time. The net yield improvement is the difference between an estimated yield improvement from selected target semiconductor chips for irradiation and an estimated yield loss due to collateral irradiation of functional semiconductor chips for each anneal plan. After simulating the net yield improvements for all the anneal plans, the anneal plan providing the greatest net yield improvement can be selected and utilized.