Abstract:
Semiconductor nanoparticles are deposited on a top surface of a first insulator layer of a substrate. A second insulator layer is deposited over the semiconductor nanoparticles and the first insulator layer. A semiconductor layer is then bonded to the second insulator layer to provide a semiconductor-on-insulator substrate, which includes a buried insulator layer including the first and second insulator layers and embedded semiconductor nanoparticles therein. Back gate electrodes are formed underneath the buried insulator layer, and shallow trench isolation structures are formed to isolate the back gate electrodes. Field effect transistors are formed in a memory device region and a logic device region employing same processing steps. The embedded nanoparticles can be employed as a charge storage element of non-volatile memory devices, in which charge carriers tunnel through the second insulator layer into or out of the semiconductor nanoparticles during writing and erasing.
Abstract:
A method of forming the heterojunction bipolar transistor that includes providing a stack of a base layer, an extrinsic base layer, a first metal containing layer, and a dielectric cap layer. The dielectric cap layer and the first metal containing layer may be etched to provide a base contact and a dielectric cap. Exposed portions of the base layer may be etched selectively to the dielectric cap. A remaining portion of the base layer provides the base region. A hydrogenated silicon containing layer may be deposited with a low temperature deposition method. At least a portion of the hydrogenated silicon containing layer is formed on at least sidewalls of the base region. A second metal containing layer may be formed on the hydrogenated silicon containing layer. The second metal containing and the hydrogenated silicon containing layer may be etched to provide an emitter region and a collector region.
Abstract:
Various methods to integrate a Group III nitride material on a silicon material are provided. In one embodiment, the method includes providing a structure including a (100) silicon layer, a (111) silicon layer located on an uppermost surface of the (100) silicon layer, a Group III nitride material layer located on an uppermost surface of the (111) silicon layer, and a blanket layer of dielectric material located on an uppermost surface of the Group III nitride material layer. Next, an opening is formed through the blanket layer of dielectric material, the Group III nitride material layer, the (111) Si layer and within a portion of the (100) silicon layer. A dielectric spacer is then formed within the opening. An epitaxial semiconductor material is then formed on an exposed surface of the (100) silicon layer within the opening and thereafter planarization is performed.
Abstract:
A method of forming a semiconductor structure includes depositing a high-k dielectric layer within a first recess located between sidewall spacers of a first CMOS device and within a second recess located between sidewall spacers of a second CMOS device. A dummy titanium nitride layer is deposited on the high-k dielectric layer. Next, the high-k dielectric layer and the dummy titanium nitride layer are removed from the second recess in the second CMOS device. A silicon cap layer is deposited within the first recess and the second recess, the silicon cap layer is located above the high-k dielectric layer and dummy titanium nitride layer in the first CMOS device. Subsequently, dopants are implanted into the silicon cap layer located in the second recess of the second CMOS device.
Abstract:
A back end of line device and method for fabricating a transistor device include a substrate having an insulating layer formed thereon and a channel layer formed on the insulating layer. A gate structure is formed on the channel layer. Dopants are implanted into an upper portion of the channel layer on opposite sides of the gate structure to form shallow source and drain regions using a low temperature implantation process. An epitaxial layer is selectively grown on the shallow source and drain regions to form raised regions above the channel layer and against the gate structure using a low temperature plasma enhanced chemical vapor deposition process, wherein low temperature is less than about 400 degrees Celsius.
Abstract:
A Bipolar Junction Transistor with an intrinsic base, wherein the intrinsic base includes a top surface and two side walls orthogonal to the top surface, and a base contact electrically coupled to the side walls of the intrinsic base. In one embodiment an apparatus can include a plurality of Bipolar Junction Transistors, and a base contact electrically coupled to the side walls of the intrinsic bases of each BJT.
Abstract:
A method of fabricating a semiconductor device that includes forming a replacement gate structure on a portion of a semiconductor substrate, wherein source regions and drain regions are formed in opposing sides of the replacement gate structure. A dielectric is formed on the semiconductor substrate having an upper surface that is coplanar with an upper surface of the replacement gate structure. The replacement gate structure is removed to provide an opening to an exposed portion of the semiconductor substrate. A functional gate conductor is epitaxially grown within the opening in direct contact with the exposed portion of the semiconductor substrate. The method is applicable to planar metal oxide semiconductor field effect transistors (MOSFETs) and fin field effect transistors (finFETs).