Structure and method for forming a low gate resistance high-K metal gate transistor device
    13.
    发明授权
    Structure and method for forming a low gate resistance high-K metal gate transistor device 有权
    用于形成低栅极电阻的高K金属栅极晶体管器件的结构和方法

    公开(公告)号:US08772100B2

    公开(公告)日:2014-07-08

    申请号:US13654987

    申请日:2012-10-18

    Abstract: A low gate resistance high-k metal gate transistor device is formed by providing a set of gate stacks (e.g., replacement metal gate (RMG) stacks) in a trench on a silicon substrate. The gate stacks in the trench may have various layers such as: a high-k layer formed over the substrate; a barrier layer (formed over the high-k layer; a p-type work function (pWF) layer formed over the barrier layer; and an n-type work function (nWF) layer formed over the pWF layer. The nWF layer will be subjected to a nitrogen containing plasma treatment to form a nitridized nWF layer on the top surface, and an Al containing layer will then be applied over the gas plasma treated layer. By utilizing a gas plasma treatment, the gap within the trench may remain wider, and thus allow for improved Al fill and reflow at high temperature (400° C.-480° C.) subsequently applied thereto.

    Abstract translation: 通过在硅衬底上的沟槽中提供一组栅极堆叠(例如,替换金属栅极(RMG)堆叠)来形成低栅极电阻的高k金属栅极晶体管器件。 沟槽中的栅极堆叠可以具有各种层,例如:在衬底上形成的高k层; 阻挡层(形成在高k层上;形成在势垒层上的p型功函数(pWF)层;以及在pWF层上形成的n型功函数(nWF)层,nWF层将 进行含氮等离子体处理,在顶面形成氮化的nWF层,然后将含Al层施加到气体等离子体处理层上,通过利用气体等离子体处理,沟槽内的间隙保持较宽, 从而允许在随后施加到其上的高温(400℃-480℃)下改善Al填充和回流。

    Optimization of a laser anneal beam path for maximizing chip yield
    20.
    发明授权
    Optimization of a laser anneal beam path for maximizing chip yield 有权
    用于最大化芯片产量的激光退火光束路径的优化

    公开(公告)号:US09335759B2

    公开(公告)日:2016-05-10

    申请号:US14177260

    申请日:2014-02-11

    Abstract: Semiconductor chips with curable out of specification measured values of an anneal-activated parameter are identified at a test step. A plurality of anneal plans are generated to include at least one of the identified semiconductor chips. A net yield improvement is calculated for each anneal plan. Each anneal plan includes the paths of a laser beam across the wafer to be irradiated, and optionally includes an azimuthal angle of the wafer as a function of time. The net yield improvement is the difference between an estimated yield improvement from selected target semiconductor chips for irradiation and an estimated yield loss due to collateral irradiation of functional semiconductor chips for each anneal plan. After simulating the net yield improvements for all the anneal plans, the anneal plan providing the greatest net yield improvement can be selected and utilized.

    Abstract translation: 在测试步骤中识别具有退火激活参数的规格测量值的可固化的半导体芯片。 生成多个退火计划以包括所识别的半导体芯片中的至少一个。 对每个退火计划计算净产量改进。 每个退火计划包括穿过要照射的晶片的激光束的路径,并且可选地包括作为时间的函数的晶片的方位角。 净收益率的改善是所选择的用于照射的目标半导体芯片的估计产量提高与由于每个退火计划的功能性半导体芯片的侧向照射而导致的估计的产量损失之间的差异。 在模拟所有退火计划的净产量改进之后,可以选择和利用提供最大净产量改进的退火计划。

Patent Agency Ranking