Abstract:
Methods for planarizing layers of a material, such as a dielectric, and interconnect structures formed by the planarization methods. The method includes depositing a first dielectric layer on a top surface of multiple conductive features and on a top surface of a substrate between the conductive features. A portion of the first dielectric layer is selectively removed from the top surface of at least one of the conductive features without removing a portion the first dielectric layer that is between the conductive features. A second dielectric layer is formed on the top surface of the at least one of the conductive features and on a top surface of the first dielectric layer, and a top surface of the second dielectric layer is planarized. A layer operating as an etch stop is located between the top surface of at least one of the conductive features and the second dielectric layer.
Abstract:
Various aspects include an integrated circuit (IC), design structure, and a method of making the same. In one embodiment, the IC includes: a substrate; a dielectric layer disposed on the substrate; a set of wire components disposed on the dielectric layer, the set of wire components including a first wire component disposed proximate a second wire component; a bond pad disposed on the first wire component, the bond pad including an exposed portion; a passivation layer disposed on the dielectric layer about a portion of the bond pad and the set of wire components, the passivation layer defining a wire structure via connected to the second wire component; and a wire structure disposed on the passivation layer proximate the bond pad and connected to the second wire component through the wire structure via.
Abstract:
A semiconductor device may include a transistor gate in a device layer; an interconnect layer over the device layer; and an air gap extending through the interconnect layer to contact an upper surface of the transistor gate. The air gap provides a mechanism to reduce both on-resistance and off-capacitance for applications using SOI substrates such as radio frequency switches.
Abstract:
Disclosed are structures with an optical waveguide having a first segment at a first level and a second segment extending between the first level and a higher second level and further extending along the second level. Specifically, the waveguide comprises a first segment between first and second dielectric layers. The second dielectric layer has a trench, which extends through to the first dielectric layer and which has one side positioned laterally adjacent to an end of the first segment. The waveguide also comprises a second segment extending from the bottom of the trench on the side adjacent to the first segment up to and along the top surface of the second dielectric layer on the opposite side of the trench. A third dielectric layer covers the second segment in the trench and on the top surface of the second dielectric layer. Also disclosed are methods of forming such optoelectronic structures.
Abstract:
An approach to creating a semiconductor structure for a dielectric layer over a void area includes determining a location of a void area of the topographical semiconductor feature. A second dielectric layer is deposited on a first dielectric layer and a top surface of a topographical semiconductor feature. The second dielectric layer is patterned to one or more portions, wherein at least one portion of the patterned second dielectric layer is over the location of the void area of the topographical semiconductor feature. A first metal layer is deposited over the second dielectric layer, at least one portion of the first dielectric layer, and a portion of the top surface of the topographical semiconductor feature. A chemical mechanical polish of the first metal layer is performed, wherein the chemical mechanical polish reaches the top surface of at least one of the one or more portions of the second dielectric layer.
Abstract:
A semiconductor device may include a transistor gate in a device layer; an interconnect layer over the device layer; and an air gap extending through the interconnect layer to contact an upper surface of the transistor gate. The air gap provides a mechanism to reduce both on-resistance and off-capacitance for applications using SOI substrates such as radio frequency switches.