Abstract:
Devices and methods of forming a device. A two-terminal device element includes a device stack coupled between first and second terminals. The first terminal contacts a metal line in an underlying interconnect level, and the second terminal is formed over the device layer. An encapsulation liner covers exposed side surfaces of the device stack of the two-terminal device element. A dual damascene interconnect is coupled to the two-terminal device element.
Abstract:
The present disclosure generally relates to methods for cleaning the backside of a wafer. A wet cleaning method may be used by stripping off the uppermost spacer layers on the backside of the wafer using a cleaning solution. In one embodiment, hydrogen fluoride (HF) solution may be employed to remove the nitride/oxide spacer layer. In another embodiment, a dry cleaning method may be employed to etch the wafer at the bevel region. Residues are completely removed from the wafer backside. This method improves the yield and storage life of the semiconductor wafers.
Abstract:
Embodiments of a method of processing semiconductor devices are presented. The method includes providing a substrate prepared with isolation regions having a non-planar surface topology. The substrate includes at least first and second regions. The first region includes a memory region and the second region includes a logic region. A hard mask layer is formed covering the substrate and the isolation regions with non-planar surface topology. The method includes selectively processing an exposed portion of the hard mask layer over a select region while protecting a portion of the hard mask layer over a non-select region. The top substrate area and isolation regions of the non-select region are not exposed during processing of the portion of the hard mask layer over the select region. Hard mask residue is completely removed over the select region during processing of the exposed portion of the hard mask layer.
Abstract:
A method includes providing a substrate with a patterned second layer over a first layer. The second layer includes a second layer opening having a first CD equal to the CD produced by a lithographic system (CDL). CDL is larger than a desired CD (CDD). A third layer is formed to fill the opening, leaving a top surface of the second layer exposed. The second layer is removed to produce a mesa formed by the third layer. The CD of the mesa is equal to about the first CD. The mesa is trimmed to produce a mesa with a second CD equal to about CDD. A fourth layer is formed to cover the first layer, leaving a top of the mesa exposed. The substrate is etched to remove the mesa and a portion of the first layer below the mesa to form an opening in the first layer with CDD.
Abstract:
Integrated circuits and methods for manufacturing the same are provided. An integrated circuit includes a base dielectric layer, a first dielectric layer overlying the base dielectric layer, and a second dielectric layer overlying the first dielectric layer. A first overlay mark is positioned within the first dielectric layer, and a second overlay mark is positioned within the second dielectric layer, where the second overlay mark is offset from the first overlay mark. First and second blocks are positioned within the base dielectric layer, where the first overlay mark directly overlays the first block and the second overlay mark directly overlays the second block.
Abstract:
Integrated circuits having nickel silicide contacts and methods for fabricating integrated circuits with nickel silicide contacts are provided. An exemplary method for fabricating an integrated circuit includes providing a semiconductor substrate and forming a nonvolatile memory structure over the semiconductor substrate. The nonvolatile memory structure includes a gate surface. The method further includes depositing a nickel-containing material over the gate surface. Also, the method includes annealing the nonvolatile memory structure and forming a nickel silicide contact on the gate surface from the nickel-containing material.
Abstract:
Integrated circuits and methods for manufacturing the same are provided. An integrated circuit includes a lower electrode overlying a substrate, an insulating layer overlying the lower electrode, and an upper electrode overlying the insulating layer. The lower electrode, the insulating layer, and the upper electrode form a stack having a side surface. A phase change spacer is adjacent to the side surface, where the phase change spacer is electrically connected to the lower electrode and the upper electrode.
Abstract:
Device and a method of forming a device are presented. The method includes providing a substrate prepared with isolation regions. The substrate includes first, second and third regions. The first region includes a memory region, the second region includes a high voltage (HV) region and the third region includes a logic region. An additional dielectric layer covering the substrate and the isolation regions is formed. A first select region is selectively processed while protecting first non-select regions. The first select region is one of the first, second and third device regions. A first gate dielectric is formed on the select region. Top substrate active area and isolation regions of the first non-select regions are not exposed during processing of the first select region and forming the first gate dielectric.
Abstract:
A device and methods for forming a device are disclosed. A substrate is provided and a TSV is formed in the substrate through a top surface of the substrate. The TSV and top surface of the substrate is lined with an insulation stack having a first insulation layer, a polish stop layer and a second insulation layer. A conductive layer is formed on the substrate. The TSV is filled with conductive material of the conductive layer. The substrate is planarized to remove excess conductive material of the conductive layer. The planarizing stops on the polish stop layer to form a planar top surface.
Abstract:
A CMP structure for CMP processing and a method of making a device using the same are presented. The apparatus comprises a polishing pad on a platen table, a head assembly for holding a wafer against the polishing pad, wherein the head assembly includes a retaining ring, a sensor for sensing the depth of grooves on the retaining ring and a controller for determining an update pressure to apply to the retaining ring based on the depth of the grooves and applying the updated pressure to the retaining ring during processing.