Abstract:
A method for fabricating high efficiency CIGS solar cells including the deposition of Ga concentrations (Ga/(Ga+In)=0.25−0.66) from sputtering targets containing Ga concentrations between about 25 atomic % and about 66 atomic %. Further, the method includes a high temperature selenization process integrated with a high temperature anneal process that results in high efficiency.
Abstract:
Embodiments described herein provide methods for forming indium-gallium-zinc oxide (IGZO) devices. A substrate is provided. An IGZO layer is formed above the substrate. A copper-containing layer is formed above the IGZO layer. A wet etch process is performed on the copper-containing layer to form a source region and a drain region above the IGZO layer. The performing of the wet etch process on the copper-containing layer includes exposing the copper-containing layer to an etching solution including a peroxide compound and one of citric acid, formic acid, malonic acid, lactic acid, etidronic acid, phosphonic acid, or a combination thereof.
Abstract:
In some embodiments, oxidants such as ozone (O3) and/or nitrous oxide (N2O) are used during the reactive sputtering of metal-based semiconductor layers used in TFT devices. The O3 and N2O gases are stronger oxidants and result in a decrease in the concentration of oxygen vacancies within the metal-based semiconductor layer. The decrease in the concentration of oxygen vacancies may result in improved stability under conditions of negative bias illumination stress (NBIS).
Abstract translation:在一些实施方案中,在TFT器件中使用的金属基半导体层的反应溅射期间,使用氧化剂如臭氧(O 3)和/或一氧化二氮(N 2 O)。 O 3和N 2 O气体是更强的氧化剂并且导致金属基半导体层内的氧空位浓度的降低。 氧空位浓度的降低可能导致负偏压照明应力(NBIS)条件下的稳定性提高。
Abstract:
A method for fabricating high efficiency CIGS solar cells including the deposition of Ga concentrations (Ga/(Ga+In)=0.25−0.66) from sputtering targets containing Ga concentrations between about 25 atomic % and about 66 atomic %. Further, the method includes a high temperature selenization process integrated with a high temperature anneal process that results in high efficiency.
Abstract:
Methods are described for forming CIGS absorber layers in TFPV devices with graded compositions and graded band gaps. Methods are described for utilizing Ag to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing Al to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing at least one of Na, Mg, K, or Ca to increase the band gap at the front surface of the absorber layer.
Abstract:
Embodiments provided herein describe solid-state lithium batteries and methods for forming such batteries. A first current collector is provided. A first layer is formed above the first current collector. The first layer includes lithium and cobalt. The first layer is annealed. A second layer is formed above the annealed first layer. The second layer includes lithium and cobalt, and the annealed first layer and the second layer jointly form a first electrode. An electrolyte is formed above the first electrode. A second electrode is formed above the electrolyte. A second current collector is formed above the second electrode.
Abstract:
Methods are described for forming CIGS absorber layers in TFPV devices with graded compositions and graded band gaps. Methods are described for utilizing Al to increase the band gap at the front surface of the absorber layer. Methods are described for forming a Cu—In—Ga layer followed by partial or full selenization. This results in a higher Ga concentration at the back interface. The substrate is then exposed to an aluminum CVD precursor while the substrate is still in the selenization equipment to deposit a thin Al layer. The substrate is then exposed to a Se source to fully convert the absorber layer. This results in a higher Al concentration at the front of the absorber.
Abstract:
Embodiments provided herein describe methods and systems for evaluating electrochromic material processing conditions. A substrate having a plurality of site-isolated regions defined thereon is provided. A first electrochromic material, or a first electrochromic device stack, is formed above a first of the plurality of site-isolated regions using a first set of processing conditions. A second electrochromic material, or a second electrochromic device stack, is formed above a second of the plurality of site-isolated regions using a second set of processing conditions. The second set of processing conditions is different than the first set of processing conditions.
Abstract:
Optical absorbers, solar cells comprising the absorbers, and methods for making the absorbers are disclosed. The optical absorber comprises a semiconductor layer having a bandgap of between about 1.0 eV and about 1.6 eV disposed on a substrate, wherein the semiconductor comprises two or more earth abundant elements. The bandgap of the optical absorber is graded through the thickness of the layer by partial substitution of at least one grading element from the same group in the periodic table as the at least one of the two or more earth abundant elements.
Abstract:
Embodiments provided herein describe methods and systems for evaluating thermochromic material processing conditions. A plurality of site-isolated regions on at least one substrate are designated. A first thermochromic material is formed on a first of the plurality of site-isolated regions on the at least one substrate with a first set of processing conditions. A second thermochromic material is formed on a second of the plurality of site-isolated regions on the at least one substrate with a second set of processing conditions. The second set of processing conditions is different than the first set of processing conditions.