Abstract:
Embodiments of the present disclosure are directed towards devices and methods for identifying preferred access networks based at least in part on access network information including access network assistance information, steering policies, or access commands. In some embodiments, conflicts between access network information and access network discovery and selection function (ANDSF) policies may be rectified in identifying a preferred access network.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating Wireless Local Area Network (WLAN) offloading information between cellular managers. For example, a first cellular manager of a first cellular network may send to a second cellular manager of a second cellular network one or more WLAN offload parameters corresponding to Radio Access Network (RAN) assisted WLAN interworking information, which is sent to one or more User Equipment (UE) in the first cellular network.
Abstract:
Some demonstrative embodiments include devices, systems of securing communications of a User Equipment (UE) in a Wireless Local Area Network (WLAN). For example, a cellular node may transmit to a UE a cellular message including a UE security key, and a WLAN access device may communicate with the cellular node security information including the UE security key. The WLAN access device may communicate with the UE based on the UE security key, e.g., to authenticate the UE and/or encrypt communications with the UE.
Abstract:
An embodiment of a method for user equipment feedback of performance metrics during dynamic radio switching is disclosed. The method may include the UE receiving an indication to switch from a first radio associated with a first radio access technology (RAT) of a communication system to a second radio associated with a second RAT of the communication system. The UE transmits the performance metrics to the second radio and switches from a first radio of the plurality of radios to a second radio of the plurality of radios, the first radio associated with the first RAT and the second radio associated with the second RAT.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of transferring control of a Remote Radio Head (RRH) between Base-Band Unit (BBU) processing pools. For example, a Base Band Unit (BBU) processing pool may include a transport network interface to communicate with a plurality of Remote Radio Heads (RRHs) via a transport network; and a pool processor to manage a plurality of BBUs, the plurality of BBUs configured to control the plurality of RRHs according to a RRH control protocol, the pool processor being configured to transfer control of at least one RRH of the plurality of RRHs from at least one BBU of the plurality of BBUs to at least one target BBU processing pool.
Abstract:
Some demonstrative embodiments include devices, systems and methods of Access Network Discovery and Selection Function (ANDSF) for traffic offloading. For example, an ANDSF Management Object (MO) may include one or more ANDSF policies, at least one ANDSF policy including ANDSF selection criteria to offload traffic between a cellular network and a Wireless Local Area Network (WLAN); and a preference indicator to indicate a preference between the ANDSF selection criteria and Radio Access Network (RAN) selection criteria from the cellular network.
Abstract:
Some demonstrative embodiments include devices, systems and methods of providing offloadability information to a User Equipment (UE). For example, a core network (CN) may provide to the UE Packet Data Network (PDN) offloadability information corresponding to one or more PDN connections of the UE, the PDN offloadability information indicating which PDN connection of the one or more PDN connections is able to be offloaded to a Wireless Local Area Network (WLAN).
Abstract:
Embodiments of the present disclosure are directed towards devices and methods for identifying preferred access networks based at least in part on access network information including access network assistance information, steering policies, or access commands. In some embodiments, conflicts between access network information and access network discovery and selection function (ANDSF) policies may be rectified in identifying a preferred access network.
Abstract:
Devices, methods, user equipment (UE), base stations, storage media, and other embodiments are provided for managing associations in a communication network. In one example embodiment, a Next Generation (NG) core network device is configured for an Access and Mobility Management Function (AMF) with an NG-Radio Access Network (NG-RAN) node. The network device may be configured to access a plurality of Transport Network Link (TNL) associations and generate an AMF configuration update using the TNL associations, the AMF configuration update comprising AMF transport layer address information for the plurality of TNL associations. The network device may then initiate transmission of the AMF configuration update comprising the AMF transport layer address information to the NG-RAN node. Additional embodiments may involve binding updates or setup response messaging for managing associations, along with additional operations.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating between a cellular manager and a User Equipment (UE) via a Wireless Local Area network (WLAN) node. For example, an Evolved Node B (eNB) may be configured to communicate with a User Equipment (UE) traffic of at least one Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) Radio Access Bearer (E-RAB); to participate in establishment of an IP tunnel with the UE via a Wireless Local Area Network (WLAN) node; to encapsulate an IP payload comprising downlink traffic of the E-RAB in an IP tunneling packet; and to send the IP tunneling packet to the UE via the IP tunnel.