Abstract:
A data file reproducing method for a personal terminal which can include providing a data file by connecting a data supplying server to a communication network, selecting a data file, connecting the data supplying server to a personal terminal, transferring the selected data file to the personal terminal, and storing automatically the transferred data file in the personal terminal. A data reproducing apparatus for a personal terminal which can include a wireless transceiver that can transfer and receive data files to and from a mobile communication network, a storage device, a controller, a decoder and a reproducing unit.
Abstract:
Provided are a tunable demultiplexer and a tunable laser, having an optical deflector in which a refractive index of a core layer of a deflection pattern region having a predetermined shape varies in response to an external electrical signal so that the optical deflector deflects incident light in the radial direction.
Abstract:
Filter-free wavelength converters for separating and rejecting an optical input signal. A first input port couples a continuous wave (CW) light. A second input port couples an optical input signal. A multimode interference semiconductor optical amplifier (MMI-SOA) determines the output port with the input port and intensity-modulation of the CW light with the optical input signal. A first output port guides the converted signal, and a second output port guides the optical input signal.
Abstract:
The present invention relates to an optical deflector driven by an electrical signal, and a wavelength tunable external resonator using the same. The optical deflector of a triangle shape, capable of controlling the refractive index of a beam depending on the electrical signal, is positioned between a reflection mirror and a diffraction grating in a Littman-Metcalf mode external resonator or between a lens and the diffraction grating in a Littrow mode external resonator. Thus, even with the reflection mirror and the diffracting grating fixed, the refractive index of the beam generated from a laser diode can be controlled by adjusting the electrical signal applied to the optical deflector, so that beam having a specific wavelength can be focused and the wavelength can be rapidly and consecutively tuned.
Abstract:
A color interpolation apparatus includes a threshold value determining unit that calculates a luminance value of each area set based on each pixel of a Bayer pattern image and determines edge determining threshold values, an edge information calculating unit that calculates pixel value variations in multiple directions of the set areas by using pixel values of pixels included in each area and edge information regarding each area by using the multiple directional pixel value variations, an area determining unit that determines an edge type by using the edge determining threshold values and the edge information, and a color interpolation unit that applies a color interpolation filter previously set according to the edge type to a corresponding area according to the edge type. The area determining unit uses green information or interpolated green information of a central pixel depending on whether or not a color of the central pixel is green.
Abstract:
Disclosed are an optical waveguide platform with integrated active transmission device and monitoring photodiode. The optical waveguide platform with hybrid integrated optical transmission device and optical active device includes an optical waveguide region formed by stacking a lower cladding layer, a core layer and an upper cladding layer on a substrate; a trench region formed by etching a portion of the optical waveguide region; and a spot expanding region formed on the core layer in the optical waveguide region, in which the optical transmission device is mounted in the trench region and the optical active device is flip-chip bonded to the spot expanding region. The monitoring photodiode is flip-chip bonded to the spot expanding region of the core layer of the optical waveguide, thereby monitoring output light including an optical coupling loss that occurs during flip-chip bonding.
Abstract:
Disclosed herein are ammonia-specific 5′-XMP aminase mutants and a method for preparing the same. A mutation is introduced into the active site of glutamine-dependent catalysis in 5′-XMP aminase. The resulting 5′-XMP aminase mutant is devoid of the glutamine-dependent activity and specifically reacts with external ammonia in converting 5′-XMP into 5′-GMP. Thus, the ammonia-specific 5′-XMP aminase mutant is stabler within cells compared to the wild type, and can be useful in the industrial conversion of 5′-XMP into 5′-GMP.
Abstract:
An antenna apparatus and a mobile terminal having the same are disclosed. The antenna apparatus includes: a first antenna portion patterned at one surface of the electronic circuit board; and a can type second antenna portion electrically connected to one end of the first antenna portion and separated from the one surface of the electronic circuit board, wherein one end of the second antenna portion is connected to the one end of the first antenna portion using a SMD method and the other end of the second antenna portion is connected to the one surface of the electronic circuit board using a SMD method through a floating pad formed in the one surface of the electronic circuit board.
Abstract:
A nitride semiconductor light emitting device includes a light emitting structure having n-type and p-type nitride semiconductor layers and an active layer formed therebetween. N-type and p-type electrodes are electrically connected to the n-type and p-type nitride semiconductors, respectively. An n-type ohmic contact layer is formed between the n-type nitride semiconductor layer and the n-type electrode and has a first layer of a material In and a second layer formed on the first layer and of a material containing W. The nitride semiconductor light emitting device has thermal stability and excellent electrical characteristics without heat treatment.
Abstract:
A semiconductor optical device includes a first mode converting core, a light amplification core, a second mode converting core, and a light modulation core disposed in a first mode converting region, a light amplification region, a second mode converting region, and a light modulating region of a semiconductor substrate, respectively, and a current blocking section covering at least sidewalls and a top surface of the light amplification core. The first mode converting core, the light amplification core, the second mode converting core, and the light modulation core are arranged along one direction in the order named, and are connected to each other in butt joints. The current blocking section includes first, second, and third cladding patterns sequentially stacked. The second cladding pattern is doped with dopants of a first conductivity type, and the first and third cladding patterns are doped with dopants of a second conductivity type.