摘要:
The method for depositing multilayers of PCD film onto the substrate comprises chemically depositing a polycrystalline diamond layers onto the substrate at deposition temperatures in the range of 650.degree. to 825.degree. C., interrupting the deposition process with a cool-down step and then depositing at least one other layer under the same deposition conditions. The method enables one to deposit PCD films having a thickness of at least 12 microns for applications on flat as well as curved substrates having wide use in the electronics industry. Thick PCD films of this invention have been found to be ideal for dissipating heat from radio frequency (RF) and microwave (MW) devices.
摘要:
The invention discloses a coated substrate product comprised of a titanium of titanium alloy substrate, at least one thin interlayer composed of a non-reactive noble metal and a hard outer coating selected from the group comprised of a ceramic, a hard metal, a hard metal compound and a diamond-like carbon, wherein at least the non-reactive noble metal interlayer which is immediately adjacent to the titanium or titanium alloy substrate is deposited onto the substrate by means of an electroless plating procedure, and the hard outer coating is deposited onto the non-reactive interlayer(s) by means of known chemical and physical vapor deposition techniques. The invention also discloses a method for making these coated substrate products.
摘要:
A method is described for improving the erosion and abrasion wear resistance and hardness of the internal wear surfaces of structures such as nozzles, jets, ducts, chutes, powder handling tubes, valve housings, conveyors, drill bushings and the like. A substantially pure tungsten layer is chemical vapor deposited on the internal wear surface of the body of the structure followed by a chemical vapor deposited top coating comprising a mixture of tungsten and tungsten carbide. The tungsten carbide is selected from the group consisting of W.sub.2 C, W.sub.3 C, and mixtures thereof and is fine grained, non-columnar and has a substantially layered microstructure. Also described are structures formed by the method.
摘要:
A method is described for improving the erosion and abrasion resistance of a sharp edged metal structure. A base layer of a noble metal is formed on the surface of the body of the structure followed by a chemical vapor deposited outer coating comprising a mixture of tungsten and tungsten carbide. The tungsten carbide is selected from the group consisting of W.sub.2 C, W.sub.3 C, and mixtures thereof and is fine grained, non-columnar and having a substantially layered microstructure. Also described is a sharp edged metal structure formed by the method.
摘要:
A highly erosive and abrasive wear resistant composite coating system is described in which an intermediate layer of substantially pure tungsten is deposited on a substrate. An outer layer is then deposited comprised of a mixture of tungsten and tungsten carbide, with the tungsten carbide consisting of W.sub.2 C, W.sub.3 C or a mixture of both. The thickness of the intermediate layer is sufficient to confer substantial erosive and abrasive wear resistance characteristics on the composite coating system. The ratio of the thickness of the intermediate layer to the thickness of the outer layer is controlled and is at least above 0.30 in the cases of W+W.sub.3 C, W+W.sub.2 C+W.sub.3 C and W+W.sub.2 C coatings.
摘要:
A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.
摘要翻译:描述了一种催化剂,用于利用浸渍有铁和铜的多孔Al 2 O 3载体和任选用碱金属促进从CO + H 2合成烃。 与未负载或共沉淀的催化剂相比,使用Al2O3载体导致抑制重蜡(C26 +烃),特别是在淤浆相操作中。
摘要:
The present invention relates to surface catalyzed ion transport membranes which demonstrate superior oxygen flux. The membranes comprise a dense multicomponent metallic oxide layer having a first surface and a second surface wherein the first surface is coated with a catalyst such as a metal or an oxide of a metal selected from Groups II, V, VI, VII, VIII, IX, X, XI, XV and the F Block lanthanides of the Periodic Table of the Elements. One or more porous layers formed from a mixed conducting multicomponent metallic oxide or a material which is not mixed conducting under process operating conditions may be formed contiguous to the second surface of the dense layer. The claimed membranes are capable of separating oxygen from oxygen-containing gaseous mixtures.
摘要:
The present invention is a method for manufacturing inorganic membranes which are capable of separating oxygen from air. The membranes comprise a thin layer of a multicomponent metallic oxide which has been deposited onto a porous substrate by organometallic chemical vapor deposition. The inorganic membranes are formed by reacting organometallic complexes corresponding to each of the respective metals making up the multicomponent metallic oxide and an oxidizing agent under conditions sufficient to deposit a thin layer of the multicomponent metallic oxide onto the porous substrate.
摘要:
This invention relates to a process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture which contains water, carbon dioxide or volatile hydrocarbons. The process utilizes a class of ion transport membranes formed from multicomponent metallic oxides wherein permeance of such membranes had been believed to be permanently degraded by water and the like under conventional process operating temperatures. This invention provides a continuous process for restoring oxygen permeance of such membranes caused by deleterious interaction between the membrane and components such as carbon dioxide, water or hydrocarbons at elevated process temperatures.
摘要:
A method is described for improving the erosion and abrasion wear resistance and hardness of the internal wear surfaces of structures such as nozzles, jets, ducts, chutes, powder handling tubes, valve housings, conveyors, drill bushings and the like. A substantially pure tungsten layer is chemical vapor deposited on the internal wear surface of the body of the structure followed by a chemical vapor deposited top coating comprising a mixture of tungsten and tungsten carbide. The tungsten carbide is selected from the group consisting of W.sub.2 C, W.sub.3 C, and mixtures thereof and is fine grained, non-columnar and has a substantially layered microstructure. Also described are structures formed by the method.