Abstract:
A method and apparatus for forming a nitrided gate dielectric. The method comprises incorporating nitrogen into a dielectric film using a plasma nitridation process to form a nitrided gate dielectric. The first step involves providing a substrate comprising a gate dielectric film. The second step involves inducing a voltage on the substrate. Finally, the substrate is exposed to a plasma comprising a nitrogen source while maintaining the voltage to form a nitrided gate dielectric on the substrate. In one embodiment, the voltage is induced on the substrate by applying a voltage to an electrostatic chuck supporting the substrate. In another embodiment, the voltage is induced on the substrate by applying a DC bias voltage to an electrode positioned adjacent the substrate.
Abstract:
A process for forming high k dielectric thin films on a substrate, e.g., silicon, by 1) low temperature (500° C. or less) deposition of a dielectric material onto a surface, followed by 2) high temperature post-deposition annealing. The deposition can take place in an oxidative environment, followed by annealing, or alternatively the deposition can take place in a non-oxidative environment (e.g., N2), followed by oxidation and annealing.
Abstract:
The present invention describes a method of processing a substrate. According to the present invention a dielectric layer is formed on the substrate. The dielectric layer is then exposed in a first chamber to activated nitrogen atoms formed in a second chamber to form a nitrogen passivated dielectric layer. A metal nitride film is then formed on the nitrogen passivated dielectric layer.
Abstract:
Embodiments of the invention provide methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral, or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic. In an alternative embodiment, a deposition system contains a catalytic water vapor generator connected to an ALD chamber.
Abstract:
The present invention generally comprises an apparatus for depositing high k dielectric or metal gate materials in which toxic, flammable, or pyrophoric precursors may be used. Exhaust conduits may be placed on the liquid precursor or solid precursor delivery cabinet, the gas panel, and the water vapor generator area. The exhaust conduits permit a technician to access the apparatus without undue exposure to toxic, pyrophoric, or flammable gases that may collect within the liquid deliver cabinet, gas panel, and water vapor generator area.
Abstract:
A layer of reduced stress is formed on a substrate using an HDP-CVD system by delaying or interrupting the application of capacitively coupled RF energy. The layer is formed by introducing a process gas into the HDP system chamber and forming a plasma from the process gas by the application of RF power to an inductive coil. After a selected period, a second layer of the film is deposited by maintaining the inductively-coupled plasma and biasing the plasma toward the substrate to enhance the sputtering effect of the plasma. In a preferred embodiment, the deposited film is a silicon oxide film, and biasing is performed by application of capacitively coupled RF power from RF generators to a ceiling plate electrode and wafer support electrode.
Abstract:
In one embodiment, a method for forming a dielectric material is provided which includes exposing a substrate sequentially to a metal-containing precursor and an oxidizing gas to form metal oxide (e.g., HfOx) during an ALD process and subsequently exposing the substrate to an inert plasma process and a thermal annealing process. Generally, the metal oxide contains hafnium, tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof. In one example, the inert plasma process contains argon and is free of nitrogen, while the thermal annealing process contains oxygen. In another example, an ALD process to form a metal oxide includes exposing the substrate sequentially to a metal precursor and an oxidizing gas containing water vapor formed by a catalytic water vapor generator. In an alternative embodiment, a method for forming a dielectric material is provide which includes exposing a substrate to a deposition process to form a metal oxide layer and subsequently exposing the substrate to a nitridation plasma process and a thermal annealing process to form metal oxynitride (e.g., HfOxNy).
Abstract translation:在一个实施例中,提供了一种用于形成介电材料的方法,其包括在ALD过程期间将衬底依次暴露于含金属的前体和氧化气体以形成金属氧化物(例如,HfO x x x) 随后将衬底暴露于惰性等离子体工艺和热退火工艺中。 通常,金属氧化物含有铪,钽,钛,铝,锆,镧或其组合。 在一个实例中,惰性等离子体工艺包含氩并且不含氮,而热退火工艺含有氧。 在另一个实例中,形成金属氧化物的ALD工艺包括将基板顺序地暴露于金属前体和含有由催化水蒸汽发生器形成的水蒸汽的氧化气体。 在替代实施例中,提供了形成电介质材料的方法,其包括将衬底暴露于沉积工艺以形成金属氧化物层,并随后将衬底暴露于氮化等离子体工艺和热退火工艺以形成金属氮氧化物(例如 ,HfO x N N y)。
Abstract:
Embodiments of the invention provide methods for depositing dielectric materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one example, a method includes sequentially exposing a substrate to a hafnium precursor and an oxidizing gas to deposit a hafnium oxide material thereon. In another example, a hafnium silicate material is deposited by sequentially exposing a substrate to the oxidizing gas and a process gas containing a hafnium precursor and a silicon precursor. The oxidizing gas usually contains water vapor formed by flowing a hydrogen source gas and an oxygen source gas through a water vapor generator. In another example, a method includes sequentially exposing a substrate to the oxidizing gas and at least one precursor to deposit hafnium oxide, zirconium oxide, lanthanum oxide, tantalum oxide, titanium oxide, aluminum oxide, silicon oxide, aluminates thereof, silicates thereof, derivatives thereof or combinations thereof.
Abstract:
The embodiments of the invention describe a process chamber, such as an ALD chamber, that has gas delivery conduits with gradually increasing diameters to reduce Joule-Thompson effect during gas delivery, a ring-shaped gas liner leveled with the substrate support to sustain gas temperature and to reduce gas flow to the substrate support backside, and a gas reservoir to allow controlled delivery of process gas. The gas conduits with gradually increasing diameters, the ring-shaped gas liner, and the gas reservoir help keep the gas temperature stable and reduce the creation of particles.
Abstract:
Methods for forming dielectric materials on a substrate in a single cluster tool are provided. In one embodiment, the method includes providing a cluster tool having a plurality of deposition chambers, depositing a metal-containing oxide layer on a substrate in a first chamber of the cluster tool, treating the metal-containing oxide layer with an insert plasma process in a second chamber of the cluster tool, annealing the metal-containing oxide layer in a third chamber of the cluster tool, and depositing a gate electrode layer on the annealed substrate in a fourth chamber of the cluster tool.