Abstract:
The present invention describes a method of processing a substrate. According to the present invention a dielectric layer is formed on the substrate. The dielectric layer is then exposed in a first chamber to activated nitrogen atoms formed in a second chamber to form a nitrogen passivated dielectric layer. A metal nitride film is then formed on the nitrogen passivated dielectric layer.
Abstract:
The present invention provides a method and apparatus for reducing the concentration of mobile ion and metal contaminants in a processing chamber by increasing the bias RF power density to greater than 0.051 W/mm.sup.2 and increasing the season time to greater than 30 seconds, during a chamber seasoning step. The method of performing a season step in a chamber by depositing a deposition material under the combined conditions of a bias RF power density of about 0.095 W/mm.sup.2 and a season time of from about 50 to about 70 seconds, reduces the mobile ion and metal contaminant concentrations within the chamber by about one order of magnitude.
Abstract translation:本发明提供了一种通过在室内增加偏压RF功率密度大于0.051W / mm 2并将季节时间增加到大于30秒来减少处理室中的移动离子和金属污染物的浓度的方法和装置 调味步骤 通过在约0.095W / mm 2的偏置RF功率密度和约50至约70秒的季节时间的组合条件下沉积沉积材料在室中进行季节步骤的方法减少了移动离子和金属 室内的污染物浓度大约一个数量级。
Abstract:
A layer of reduced stress is formed on a substrate using an HDP-CVD system by delaying or interrupting the application of capacitively coupled RF energy. The layer is formed by introducing a process gas into the HDP system chamber and forming a plasma from the process gas by the application of RF power to an inductive coil. After a selected period, a second layer of the film is deposited by maintaining the inductively-coupled plasma and biasing the plasma toward the substrate to enhance the sputtering effect of the plasma. In a preferred embodiment, the deposited film is a silicon oxide film, and biasing is performed by application of capacitively coupled RF power from RF generators to a ceiling plate electrode and wafer support electrode.
Abstract:
The present invention describes a method of processing a substrate. According to the present invention a dielectric layer is formed on the substrate. The dielectric layer is then exposed in a first chamber to activated nitrogen atoms formed in a second chamber to form a nitrogen passivated dielectric layer. A metal nitride film is then formed on the nitrogen passivated dielectric layer.
Abstract:
A method and apparatus for modifying the profile of narrow, high-aspect-ratio gaps on a semiconductor substrate are used to fill the gaps in a void-free manner. Differential heating characteristics of a substrate in a high-density plasma chemical vapor deposition (HDP-CVD) system helps to prevent the gaps from being pinched off before they are filled. The power distribution between coils forming the plasma varies the angular dependence of the sputter etch component of the plasma, and thus may be used to modify the gap profile, independently or in conjunction with differential heating. A heat source may be applied to the backside of a substrate during the concurrent deposition/etch process to further enhance the profile modification characteristics of differential heating.
Abstract:
A layer of reduced stress is formed on a substrate using an HDP-CVD system by delaying or interrupting the application of capacitively coupled RF energy. The layer is formed by introducing a process gas into the HDP system chamber and forming a plasma from the process gas by the application of RF power to an inductive coil. After a selected period, a second layer of the film is deposited by maintaining the inductively-coupled plasma and biasing the plasma toward the substrate to enhance the sputtering effect of the plasma. In a preferred embodiment, the deposited film is a silicon oxide film, and biasing is performed by application of capacitively coupled RF power from RF generators to a ceiling plate electrode and wafer support electrode.
Abstract:
A method and apparatus for modifying the profile of narrow, high-aspect-ratio gaps on a semiconductor substrate are used to fill the gaps in a void-free manner. Differential heating characteristics of a substrate in a high-density plasma chemical vapor deposition (HDP-CVD) system helps to prevent the gaps from being pinched off before they are filled. The power distribution between coils forming the plasma varies the angular dependence of the sputter etch component of the plasma, and thus may be used to modify the gap profile, independently or in conjunction with differential heating. A heat source may be applied to the backside of a substrate during the concurrent deposition/etch process to further enhance the profile modification characteristics of differential heating.
Abstract:
An insulating film with a low dielectric constant is more quickly formed on a substrate by reducing the co-etch rate as the film is deposited. The process gas is formed into a plasma from silicon-containing and fluorine-containing gases. The plasma is biased with an RF field to enhance deposition of the film. Deposition and etching occur simultaneously. The relative rate of deposition to etching is increased in the latter portion of the deposition process by decreasing the bias RF power, which decreases the surface temperature of the substrate and decreases sputtering and etching activities. Processing time is reduced compared to processes with fixed RF power levels. Film stability, retention of water by the film, and corrosion of structures on the substrate are all improved. The film has a relatively uniform and low dielectric constant and may fill trenches with aspect ratios of at least 4:1 and gaps less than 0.5 .mu.m.
Abstract:
In one embodiment, a method for forming a morphologically stable dielectric material is provided which includes exposing a substrate to a hafnium precursor, a silicon precursor and an oxidizing gas to form hafnium silicate material during a chemical vapor deposition (CVD) process and subsequently and optionally exposing the substrate to a post deposition anneal, a nitridation process and a thermal annealing process. In some examples, the hafnium and silicon precursors used during a metal-organic CVD (MOCVD) process are alkylamino compounds, such as tetrakis(diethylamino)hafnium (TDEAH) and tris(dimethylamino)silane (Tris-DMAS). In another embodiment, other metal precursors may be used to form a variety of metal silicates containing tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof.
Abstract:
In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process. In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.