Abstract:
A semiconductor structure and a method of manufacturing the same are provided. The semiconductor structure includes a stack including first conductive layers and first dielectric layers, a second conductive layer formed on the stack, openings through the second conductive layer and the stack, and through structures formed in the openings, respectively. Each through structure includes a memory layer, a gate dielectric layer, a channel layer, a dielectric material and a pad. The channel layer is isolated from the stack by the memory layer, the channel layer is isolated from the second conductive layer by the gate dielectric layer, and the memory layer and the gate dielectric layer have different compositions.
Abstract:
A memory structure includes stacks, memory layers, channel layers, dielectric layers, and first conductive lines. Each stack includes a group of alternating conductive strips and insulating strips. The memory layers are conformally disposed on the stacks. The channel layers are conformally disposed on the memory layers. The dielectric layers are disposed on portions of the channel layers at first sides of the stacks and portions of the channel layers at second sides of the stacks. The first conductive lines are disposed along sidewalls of the stacks. The first conductive lines are isolated from the channel layers by the dielectric layers. One first conductive line disposed at the first side of one stack is isolated from one first conductive line disposed at the second side of the same stack and isolated from one first conductive line disposed at the second side of an adjacent stack.
Abstract:
A 3D stacked semiconductor structure is provided, comprising a plurality of stacks vertically formed on a substrate and disposed parallel to each other, a dielectric layer formed on the stacks, a plurality of conductive plugs independently formed in the dielectric layer; and a metal-oxide-semiconductor (MOS) layer formed on the dielectric layer. One of the stacks at least comprises a plurality of multi-layered pillars, and each of the multi-layered pillars comprises a plurality of insulating layers and a plurality of semiconductor layers arranged alternately. The MOS layer comprises a plurality of MOS structures connected to the conductive plugs respectively, and function as layer-selectors for selecting and decoding the to-be-operated layer.
Abstract:
A memory structure is disclosed. The memory structure comprises a phase change material layer, a first electrode, a second electrode, and conductive spacers. The second electrode and the first electrode are electrically connected to an upper surface and a lower surface of the phase change material layer respectively. The conductive spacers are separated from each other and on side surfaces of the phase change material layer.
Abstract:
A semiconductor device and a manufacturing method of a semiconductor device thereof are provided. The manufacturing method includes the following steps. A bottom insulating layer is formed on a substrate. Two stacked structures are formed on the bottom insulating layer. Each of the stacked structures includes a plurality of gate layers, a plurality of gate insulating layers, a top insulating layer and a conductive mask layer. Each of the charge trapping structures includes a plurality of first dielectric layers and a plurality of second dielectric layers. Part of each of first dielectric layers is etched. Part of each of second dielectric layers is etched to expose part of the channel layer. A landing pad layer is formed on the conductive mask layer, the first dielectric layers and the second dielectric layers to connect the conductive mask layer and the channel layer.
Abstract:
A memory device includes a plurality of stacks of conductive strips separated by insulating material, including at least a bottom level of conductive strips, a plurality of intermediate levels of conductive strips, and a top level of conductive strips. A reference conductor is disposed in a level between the bottom level of conductive strips and a substrate, isolated from the substrate by a layer of insulating material, and isolated from the bottom level by another layer of insulating material. A plurality of vertical active strips is disposed between the plurality of stacks in electrical contact with the substrate, and with the reference conductor. Charge storage structures are disposed in interface regions at cross-points between side surfaces of the conductive strips in the plurality of intermediate levels and the vertical active strips. A bias circuit is configured to provide different bias arrangements to the reference conductor and the substrate.
Abstract:
A method for fabricating a memory device is provided: A multi-layer stack is formed on a substrate. The multi-layer stack is then patterned to form plural trenches extending along a first direction to define plural ridge-shaped stacks each of which comprises at least one conductive strip. Next, a memory layer and a channel layer are formed in sequence on bottoms and sidewalls of the trenches. A sacrifice layer is formed to fulfill the trenches. Subsequently, portions of the sacrifice layer, the memory layer and the channel layer formed in the trenches are removed to form plural openings exposing a portion of the substrate therefrom. After removing the remaining sacrifice layer, portions of the memory layer and the channel layer formed on the ridge-shaped stacks are patterned to form an interconnection between two adjacent trenches through two of the openings formed in the two adjacent trenches.
Abstract:
A memory device includes a first metal layer and a second metal layer, a metal oxide layer disposed between the first metal layer and the second metal layer, and at least one oxygen control layer disposed between the metal oxide layer and at least one of the first metal layer and the second metal layer. The at least one oxygen control layer has a graded oxygen content.
Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate, a stacked structure, a dielectric layer, a conductive structure, a dielectric structure and a conductive plug. The stacked structure includes dielectric films and conductive films arranged alternately. The dielectric layer is between the conductive structure and a sidewall of the stacked structure. The dielectric structure is on the stacked structure and defining a through via. The conductive plug fills the through via and physically contacts one of the conductive films exposed by the through via and adjoined with the dielectric layer.
Abstract:
A semiconductor structure and a manufacturing method of the same are provided. The semiconductor structure includes a conductive layer, a conductive architecture and a dielectric layer. The conductive layer defines adjacent first openings. The conductive architecture surrounds a portion of the conductive layer between the first openings. The dielectric layer separates the conductive layer and the conductive architecture.