Abstract:
The invention relates to interconnects for an integrated circuit memory device. Embodiments of the invention include processes to fabricate interconnects for memory devices in relatively few steps. Embodiments of the invention further include memory devices with metallization layers having unequal pitch dimensions in different areas of the chip, thereby permitting simultaneous fabrication of array electrodes and electrical interconnects in different areas of the chip. This reduces the number of fabrication steps used to make interconnects, thereby speeding up fabrication and reducing production costs.
Abstract:
A system for testing semiconductor components includes an interconnect, an alignment system for aligning a substrate to the interconnect, a bonding system for bonding the component to the interconnect, and a heating system for heating the component and the interconnect for separation. The interconnect includes interconnect contacts configured for bonding to, and then separation from component contacts on the components. The system can be utilized with a method that includes the steps of bonding the interconnect to the component to form bonded electrical connections, applying test signals through the bonded electrical connections, and then separating the interconnect from the component. The bonding step can be performed using metallurgical bonding, and the separating step can be performed using solder-wettable and solder non-wettable metal layers on the interconnect or the component. During the separating step the solder-wettable layers are dissolved, reducing adhesion of the bonded electrical connections, and permitting separation of the component and interconnect.
Abstract:
An interconnect for testing semiconductor components includes interconnect contacts configured for bonding to, and then separation from component contacts on the components. The interconnect can be utilized with a method that includes the steps of bonding the interconnect to the component to form bonded electrical connections, applying test signals through the bonded electrical connections, and then separating the interconnect from the component. The bonding step can be performed using metallurgical bonding, and the separating step can be performed using solder-wettable and solder non-wettable metal layers on the interconnect or the component. During the separating step the solder-wettable layers are dissolved, reducing adhesion of the bonded electrical connections, and permitting separation of the component and interconnect.
Abstract:
A method of forming a magnetic tunnel junction memory element and the resulting structure are disclosed. A magnetic tunnel junction memory element comprising a thick nonmagnetic layer between two ferromagnetic layers. The thick nonmagnetic layer has an opening in which a thinner tunnel barrier layer is disposed. The resistance of a magnetic tunnel junction memory element may be controlled by adjusting the surface area and/or thickness of the tunnel barrier layer without regard to the surface area of the ferromagnetic layers.
Abstract:
An integrated circuit includes operational circuitry; a sensor configured to sense an environmental parameter; and adjustment circuitry coupled to the sensor and to the operational circuitry and configured to affect the operational circuitry to at least partially counteract the effects of the environmental parameter. A method of testing an integrated circuit includes supporting a sensor in the integrated circuit and using the sensor to sense environmental data.
Abstract:
Structures and methods for providing magnetic shielding for integrated circuits are disclosed. The shielding comprises a foil or sheet of magnetically permeable material applied to an outer surface of a molded (e.g., epoxy) integrated circuit package. The foil can be held in place by adhesive or by mechanical means. The thickness of the shielding can be tailored to a customer's specific needs, and can be applied after all high temperature processing, such that a degaussed shield can be provided despite use of strong magnetic fields during high temperature processing, which fields are employed to maintain pinned magnetic layers within the integrated circuit.
Abstract:
An MRAM device having a plurality of MRAM cells formed of a fixed magnetic layer, a second soft magnetic layer and a dielectric layer interposed between the fixed magnetic layer and the soft magnetic layer. The MRAM cells are all formed simultaneously and at least some of the MRAM cells are designed to function as antifuse devices whereby the application of a selected electrical potential can short the antifuse device to thereby affect the functionality of the MRAM device.
Abstract:
A method and apparatus which provide one or more electromagnetic shield layers for integrated circuit chips containing electromagnetic circuit elements are disclosed. The shield layers may be in contact with the integrated circuit chip, including magnetic memory structures such as MRAMs, or in a flip-chip carrier, or both. A printed circuit board which supports the chip may also have one or more shield layers.
Abstract:
A method and apparatus which provide one or more electromagnetic shield layers for integrated circuit chips containing electromagnetic circuit elements are disclosed. The shield layers may be in contact with the integrated circuit chip, including magnetic memory structures such as MRAMs, or in a flip-chip carrier, or both. A printed circuit board which supports the chip may also have one or more shield layers.
Abstract:
Some embodiments include apparatus, systems, and methods having a base, a first die, a second arranged in a stacked with the first die and the base, and a structure located in the stack and outside at least one of the first and second dice and configured to transfer signals between the base and at least one of the first and second dice.