Abstract:
A computerized system mountable on a vehicle operable to detect an object by processing first image frames from a first camera and second image frames from a second camera. A first range is determined to said detected object using the first image frames. An image location is projected of the detected object in the first image frames onto an image location in the second image frames. A second range is determined to the detected object based on both the first and second image frames. The detected object is tracked in both the first and second image frames When the detected object leaves a field of view of the first camera, a third range is determined responsive to the second range and the second image frames.
Abstract:
A navigation system for a host vehicle is provided. The system may comprise at least one processing device programmed to receive, from a camera, a plurality of images representative of an environment of the host vehicle; analyze the plurality of images to identify at least one vehicle-induced occlusion zone in an environment of the host vehicle; and cause a navigational change for the host vehicle based, at least in part, on a size of a target vehicle that induces the identified occlusion zone.
Abstract:
A navigation system for a host vehicle is provided. The system may comprise at least one processing device comprising circuitry and a memory. The memory includes instructions that when executed by the circuitry cause the at least one processing device to: receive a plurality of images acquired by a camera, the plurality of images being representative of an environment of the host vehicle; analyze the plurality of images to identify a presence in the environment of the host vehicle a navigation rule suspension condition; temporarily suspend at least one navigational rule in response to identification of the navigation rule suspension condition; and cause at least one navigational change of the host vehicle unconstrained by the temporarily suspended at least one navigational rule.
Abstract:
The present disclosure relates to systems and methods for host vehicle navigation. In one implementation, a navigation system for a host vehicle may include at least one processing device programmed to receive, from a camera, a plurality of images representative of an environment of the host vehicle; analyze the plurality of images to identify a first flow of traffic and a second flow of traffic; determine a presence of at least one navigational state characteristic indicative of an alternating merging of the first flow of traffic and the second flow of traffic into a merged lane; cause at least a first navigational change to allow one target vehicle from the first flow of traffic to proceed ahead of the host vehicle; and cause at least a second navigational change to cause the host vehicle to follow the target vehicle into the merged lane.
Abstract:
A navigation system for a host vehicle is provided. The system may comprise at least one processing device programmed to receive, from a camera, a plurality of images representative of an environment of the host vehicle; analyze the plurality of images to identify at least one target vehicle in the environment of the host vehicle; analyze the plurality of images to identify at least one adverse characteristic of the target vehicle relative to the host vehicle; and cause at least one navigational change of the host vehicle to initiate a pass of the target vehicle after identifying the at least one characteristic of the target vehicle.
Abstract:
Systems and methods are provided for navigating based on sensed brake light patterns. In one implementation, a navigation system for a host vehicle may include at least one processing device. The at least one processing device may be programmed to receive, from a camera, a plurality of images representative of an environment ahead of the host vehicle; analyze the plurality of images to identify at least one target vehicle in the environment ahead of the host vehicle; identify, based on analysis of the plurality of images, at least one brake light associated with the target vehicle and at least one characteristic associated with changes in an illumination state of the at least one brake light; and cause a navigational change for the host vehicle based on the identified at least one characteristic associated with the changes in the illumination state of the at least one brake light.
Abstract:
A navigation system for a host vehicle is provided. The system may comprise at least one processing device programmed to receive, from a camera, a plurality of images representative of an environment of the host vehicle; analyze the plurality of images to identify at least one vehicle-induced occlusion zone in an environment of the host vehicle; and cause a navigational change for the host vehicle based, at least in part, on a size of a target vehicle that induces the identified occlusion zone.
Abstract:
Systems and methods are provided for self-aware adaptive navigation. In one implementation, a navigation system for a vehicle may include at least one processor. The at least one processor may be programmed to determine a navigational maneuver for the vehicle based, at least in part, on a comparison of a motion of the vehicle with respect to a predetermined model representative of a road segment. The at least one processor may be further programmed to receive, from a camera, at least one image representative of an environment of the vehicle. The at least one processor may be further programmed to determine, based on analysis of the at least one image, an existence in the environment of the vehicle of an navigational adjustment condition, cause the vehicle to adjust the navigational maneuver based on the existence of the navigational adjustment condition, and store information relating to the navigational adjustment condition.
Abstract:
Systems and methods are provided for navigating a host vehicle. In an embodiment, a processing device may be configured to receive a plurality of images acquired by a camera; analyze at least one of the plurality of images to identify a crosswalk in the environment of the host vehicle; analyze the at least one of the plurality of images to determine a looking direction of at least one pedestrian in a vicinity of the identified crosswalk; if the at least one pedestrian is determined to be looking in a direction of the host vehicle, determine a navigational action for the host vehicle; and cause at least one adjustment of a navigational actuator of the host vehicle in response to the determined navigational action for the host vehicle.
Abstract:
Systems and methods are provided for vehicle navigation. In one implementation, a processing device may be configured to obtain a planned driving action for accomplishing a navigational goal of a host vehicle; receive sensor data from an environment surrounding the host vehicle; identify a target vehicle moving in the environment and a velocity of the target vehicle; calculate, a predicted trajectory for the target vehicle; calculate a planned trajectory for the host vehicle corresponding to the planned driving action; identify an intersection of the planned trajectory for the host vehicle with the predicted trajectory for the target vehicle; determine a braking action of the host vehicle to comply with a safety requirement; and cause the braking action to be applied to decelerate the host vehicle to change the planned trajectory of the host vehicle, until the planned trajectory does not intersect the predicted trajectory of the target vehicle.