Abstract:
Systems and methods for navigating a host vehicle are disclosed. In one implementation, a system includes a processor configured to receive from a camera onboard the host vehicle a captured image representative of an environment of the host vehicle. The captured image is provided to a trained system. The trained system is configured to infer an output from the captured image a presence of a curved road segment in the captured image, wherein the curved road segment is associated with a road on which the host vehicle is traveling. The processor is configured to receive the output provided by the training system. The output includes at least one speed value for the host vehicle. The at least one speed value output from the trained system is based on a proximity of the host vehicle to the curved road segment and based on at least one characteristic of the curved road segment represented in the captured image. The processor is configured to cause the host vehicle to take at least one navigational action based on the determined at least one speed value.
Abstract:
Systems and methods are provided for navigating a host vehicle. A navigation system for the host vehicle may include at least one processor programmed to receive images representative of an environment of the host vehicle; analyze at least one of the images to identify navigational state information associated with the host vehicle; determine a plurality of first potential navigational actions for the host vehicle based on the navigational state information; determine respective future states for the plurality of first potential navigational actions; determine a plurality of second potential navigational actions for the host vehicle based on the determined respective future states; select, based on the plurality of second potential navigational actions, one of the plurality of first potential navigational actions; and cause an adjustment of a navigational actuator of the host vehicle to implement the selected one of the plurality of first potential navigational actions.
Abstract:
Systems and methods are provided for navigating a host vehicle. In one implementation, a system may include a processing device configured to receive an image acquired by an image capture device; determine a planned navigational action for accomplishing a navigational goal of the host vehicle; analyze the at least one image to identify a first target vehicle ahead of the host vehicle and a second target vehicle ahead of the first target vehicle; determine a next-state distance between the host vehicle and the second target vehicle that would result if the planned navigational action was taken; determine a stopping distance for the host vehicle based on a maximum braking capability of the host vehicle and a current speed of the host vehicle; and cause the vehicle to implement the planned navigational action if the stopping distance is less than the determined next-state distance.
Abstract:
Systems and methods are disclosed for identifying landmarks. A method for identifying a landmark may include initiating identification of a landmark based on one or more images from a camera, for use in autonomous vehicle navigation, the landmark including a traffic sign; initiating updating a road model with a location of the landmark; and initiating distribution of the road model with the location of the traffic sign to a plurality of autonomous vehicles.
Abstract:
The present disclosure relates to systems and methods for host vehicle navigation. In one implementation, a navigation system for a host vehicle may include at least one processing device programmed to receive, from a camera, a plurality of images representative of an environment of the host vehicle; receive, from a camera, a plurality of images representative of an environment of the host vehicle; analyze the images to identify a target vehicle in the environment of the host vehicle; cause a navigational change of the host vehicle to signal to the target vehicle an intent of the host vehicle to make a subsequent navigational maneuver; analyze the images to detect a change in a navigational state of the target vehicle; determine a navigational action for the host vehicle; and cause an adjustment of a navigational actuator of the host vehicle in response to the determined navigational action for the host vehicle.
Abstract:
A system for navigating a host vehicle may receive an image representative of an environment of the host vehicle and determine a planned navigational action for accomplishing a navigational goal of the host vehicle. The system may identify a target vehicle, determine a current speed of the target vehicle, and assume a maximum braking rate capability of the target vehicle. The system may determine a next-state distance between the host vehicle and the target vehicle that would result if the planned navigational action was taken. The system may implement the planned navigational action if the host vehicle may be stopped using a predetermined sub-maximal braking rate within a distance that is less than the determined next-state distance summed together with a target vehicle travel distance determined based on the current speed of the target vehicle and the maximum braking rate capability of the target vehicle.
Abstract:
Systems and methods use cameras to provide autonomous navigation features. In one implementation, a traffic light detection system is provided for a vehicle. One or more processing devices associated with the system receive at least one image of an area forward of the vehicle via a data interface, with the area including at least one traffic lamp fixture having at least one traffic light. The processing device(s) determine, based on at least one indicator of vehicle position, whether the vehicle is in a turn lane. Also, the processing device(s) process the received image(s) to determine the status of the traffic light, including whether the traffic light includes an arrow. Further, the system may cause a system response based on the determination of the status of the traffic light, whether the traffic light includes an arrow, and whether the vehicle is in a turn lane.
Abstract:
A navigation system for a host vehicle is provided. The system may comprise at least one processing device programmed to receive, from a camera, a plurality of images representative of an environment of the host vehicle; analyze the plurality of images to identify at least one vehicle-induced occlusion zone in an environment of the host vehicle; and cause a navigational change for the host vehicle based, at least in part, on a size of a target vehicle that induces the identified occlusion zone.
Abstract:
A navigation system for a host vehicle is provided. The system may comprise at least one processing device comprising circuitry and a memory. The memory includes instructions that when executed by the circuitry cause the at least one processing device to: receive a plurality of images acquired by a camera, the plurality of images being representative of an environment of the host vehicle; analyze the plurality of images to identify a presence in the environment of the host vehicle a navigation rule suspension condition; temporarily suspend at least one navigational rule in response to identification of the navigation rule suspension condition; and cause at least one navigational change of the host vehicle unconstrained by the temporarily suspended at least one navigational rule.
Abstract:
The present disclosure relates to systems and methods for host vehicle navigation. In one implementation, a navigation system for a host vehicle may include at least one processing device programmed to receive, from a camera, a plurality of images representative of an environment of the host vehicle; analyze the plurality of images to identify a first flow of traffic and a second flow of traffic; determine a presence of at least one navigational state characteristic indicative of an alternating merging of the first flow of traffic and the second flow of traffic into a merged lane; cause at least a first navigational change to allow one target vehicle from the first flow of traffic to proceed ahead of the host vehicle; and cause at least a second navigational change to cause the host vehicle to follow the target vehicle into the merged lane.