Abstract:
In an example, a method of memory repair may include receiving, by a memory repair unit, a plurality of memory identifiers. The method may include determining, by the memory repair unit, that a first memory identifier of the plurality of memory identifiers corresponds to a first memory of a plurality of memories. The method may include determining, by the memory repair unit, that a second memory identifier corresponds to a second memory of the plurality of memories. The method may include outputting, by the memory repair unit, in parallel: a first value to a repair enable input of the first memory, and a second value to a repair enable input of the second memory.
Abstract:
A computer-readable storage medium for controlling voltage droop storing instructions that, when executed by a processor, cause a device to perform operations including receiving a first voltage to a first input of a first component of a device. The first voltage corresponding to a first logical value causes a first internal power supply of the first component to be charged using an external power supply. The operations further include providing a second voltage to a second input of a second component of the device in response to a first voltage level of the first internal power supply satisfying a second voltage level. The second voltage corresponding to the first logical value causes a second internal power supply of the second component of the device to be charged using the external power supply.
Abstract:
A latch circuit includes an AND-NOR gate, a NAND gate, and a NOR gate. The AND-NOR gate includes a first AND-input configured to receive input data and a second AND-input coupled to an output of the NAND gate. The AND-NOR gate includes a NOR-input coupled to an output of the NOR gate, and an output configured to generate output data. The NAND gate includes a first input coupled to the output of the AND-NOR gate and a second input configured to receive a clock signal. The NOR gate includes a first input coupled to the output of the AND-NOR gate and a second input configured to receive a complementary clock signal. During a first half clock cycle, the AND-NOR gate passes the data from the input to the output. During a second half clock cycle, the feedback configuration of the AND-NOR gate and the NOR gate latches the data.
Abstract:
A memory is provided that includes a row decoder that decodes an address into a plurality of decoded signals for selecting a word line to be asserted from a plurality of word lines. Each word line is driven through a decoder level-shifter that processes the decoded signals. Each decoder level-shifter corresponds to a unique combination of the decoded signals. The row decoder is in a logic power domain such that the decoded signals are asserted to a logic power supply voltage. When a decoder level-shifter's unique combination of decoded signals are asserted by the row decoder, the decoder level-shifter drives the corresponding word line with a memory power supply voltage for a memory power domain.
Abstract:
Voltage droop control is disclosed. A device includes a first component coupled to an external power supply and a second component coupled to the external power supply. The first component includes a first input configured to receive a first voltage, a first internal power supply configured to be charged by the external power supply in response to the first voltage corresponding to a first logical value, and a voltage droop controller configured to output a second voltage via a first output. The second voltage corresponds to the first logical value in response to a first voltage level of the first internal power supply satisfying a second voltage level. The second component includes a second input configured to receive the second voltage from the first output.
Abstract:
A memory and a method for operating a memory are provided. The memory includes a memory cell configured to be powered from a first voltage source, a bitline, and a write driver configured to write to the memory cell through the bitline, the write driver comprising a pull-up circuit to pull up bitline voltage towards a second voltage source while using the first voltage source to limit the bitline voltage, the first and second voltage sources being in different voltage domains.
Abstract:
An example scannable register file includes a plurality of memory cells and, a shift phase of a scan test shifts data bits from a scan input through the plurality of memory cells to a scan output. The shifting can be performed by, on each clock cycle, reading one of the plurality of memory cells to supply the scan out and writing one of the plurality of memory cells with the data bit on a scan input. To perform sequential reads and writes on each clock cycle, the scannable register can generate a write clock that, during the shift phase, is inverted from the clock used for functional operation. The write clock is generated without glitches so that unintended writes do not occur. Scannable register files can be integrated with scan-based testing (e.g., using automatic test pattern generation) of other modules in an integrated circuit.
Abstract:
A pulse latch is provided that latches a ground signal responsive to decoded signal carried on a decoded signal node. The pulse latch includes a reset logic circuit that controls a switch coupled between the decoded signal node and ground such that when the switch is turned on by the reset logic circuit, the decoded signal node is grounded. The reset of the decoded signal node by the reset logic circuit is responsive to a ground signal. The ground signal is generated so as to be responsive to a clock edge. Thus, the reset of the decoded signal node is also responsive to the clock edge.
Abstract:
A pseudo dual port (PDP) memory is disclosed having a write driver that selectively precharges only one of a bit line and a complement bit line in a bit line pair responsive to a bit value to be written into an accessed bitcell while discharging a remaining one of the bit line and the complement bit line. In this fashion, the cleanup time between a read operation and a write operation during a read/write clock cycle is advantageously reduced.
Abstract:
A static, ternary content addressable memory (TCAM) includes a key cell and a mask cell coupled to intermediate match lines. The key cell is coupled to a first pull-down transistor and a first pull-up transistor. The mask cell is coupled to a second pull-down transistor and a second pull-up transistor. The first pull-down transistor and second pull-down transistor are connected in parallel and the first pull-up transistor and second pull-up transistor are connected in series. A match line output is also coupled to the first pull-down transistor and second pull-down transistor and further coupled to the first pull-up transistor and second pull-up transistor.