Abstract:
Methods and an apparatus related to generating parameters and guidelines used in the manufacture of semiconductor IC devices are described. A method includes measuring a first oscillating signal produced by a first ring oscillator that includes a first interconnect provided in a first interconnect layer of an IC, selecting a first mode of operation for a second ring oscillator circuit that includes a second interconnect disposed in alignment with the first interconnect, selecting a second mode of operation for the second ring oscillator circuit, and determining one or more characteristics of the first interconnect based on a difference in frequency of the first oscillating signal produced when the second ring oscillator circuit is operated in the first mode and frequency of the first oscillating signal when the second ring oscillator circuit is operated in the second mode.
Abstract:
Methods and an apparatus related to generating parameters and guidelines used in the manufacture of semiconductor IC devices are described. A method includes measuring a first oscillating signal produced by a first ring oscillator that includes a first interconnect provided in a first interconnect layer of an IC, selecting a first mode of operation for a second ring oscillator circuit that includes a second interconnect disposed in alignment with the first interconnect, selecting a second mode of operation for the second ring oscillator circuit, and determining one or more characteristics of the first interconnect based on a difference in frequency of the first oscillating signal produced when the second ring oscillator circuit is operated in the first mode and frequency of the first oscillating signal when the second ring oscillator circuit is operated in the second mode.
Abstract:
A semiconductor device includes: a memory circuit having a plurality of quadrants arranged at corners of the memory circuit and surrounding a bank control component; wherein a first quadrant of the plurality of quadrants includes a first bit cell core and a first set of input output circuits configured to access the first bit cell core, the first quadrant defined by a rectangular boundary that encloses portions of two perpendicular edges of the memory circuit; wherein a second quadrant of the plurality of quadrants includes a second bit cell core and a second set of input output circuits configured to access the second bit cell core, the second quadrant being adjacent the first quadrant, wherein a border between the first quadrant and the second quadrant defines a first axis about which the first quadrant and the second quadrant are symmetrical.
Abstract:
A memory is provided that includes a row decoder that decodes an address into a plurality of decoded signals for selecting a word line to be asserted from a plurality of word lines. Each word line is driven through a decoder level-shifter that processes the decoded signals. Each decoder level-shifter corresponds to a unique combination of the decoded signals. The row decoder is in a logic power domain such that the decoded signals are asserted to a logic power supply voltage. When a decoder level-shifter's unique combination of decoded signals are asserted by the row decoder, the decoder level-shifter drives the corresponding word line with a memory power supply voltage for a memory power domain.
Abstract:
A write driver is provided that includes a first write driver inverter that inverts a data signal to drive a gate of a second write driver transistor. The write driver transistor has a terminal coupled to a bit line and another terminal coupled to a boost capacitor. A ground for the first write driver inverter floats during a write assist period to choke off leakage of boost charge from the boost capacitor through the write driver transistor.
Abstract:
A signal interconnect includes a transmission line, a termination circuit coupled to the transmission line, and a high pass filter circuit coupled in series along the transmission line. The high pass filter circuit includes a first resistive circuit and a first capacitive circuit coupled in parallel. The first resistive circuit has a resistance based on a difference between a resistance of the transmission line at a high frequency and a resistance of the transmission line at a low frequency.
Abstract:
A signal interconnect includes a transmission line, a termination circuit coupled to the transmission line, and a high pass filter circuit coupled in series along the transmission line. The high pass filter circuit includes a first resistive circuit and a first capacitive circuit coupled in parallel. The first resistive circuit has a resistance based on a difference between a resistance of the transmission line at a high frequency and a resistance of the transmission line at a low frequency.
Abstract:
A semiconductor device includes: a memory circuit having a plurality of quadrants arranged at corners of the memory circuit and surrounding a bank control component; wherein a first quadrant of the plurality of quadrants includes a first bit cell core and a first set of input output circuits configured to access the first bit cell core, the first quadrant defined by a rectangular boundary that encloses portions of two perpendicular edges of the memory circuit; wherein a second quadrant of the plurality of quadrants includes a second bit cell core and a second set of input output circuits configured to access the second bit cell core, the second quadrant being adjacent the first quadrant, wherein a border between the first quadrant and the second quadrant defines a first axis about which the first quadrant and the second quadrant are symmetrical.
Abstract:
A circuit including an output node and a cross-coupled pair of semiconductor devices configured to provide, at the output node, an output signal in a second voltage domain based on an input signal in a first voltage domain is described herein. The circuit further includes a pull-up assist circuit coupled to the output node; and a look-ahead circuit coupled to the pull-up assist circuit, wherein the look-ahead circuit is configured to cause the pull-up assist circuit to assist in increasing a voltage level at the output node when there is a decrease in a voltage level of an inverted output signal in the second voltage domain from a high voltage level of the second voltage domain to a low voltage level of the second voltage domain.
Abstract:
A memory is provided that includes a row decoder that decodes an address into a plurality of decoded signals for selecting a word line to be asserted from a plurality of word lines. Each word line is driven through a decoder level-shifter that processes the decoded signals. Each decoder level-shifter corresponds to a unique combination of the decoded signals. The row decoder is in a logic power domain such that the decoded signals are asserted to a logic power supply voltage. When a decoder level-shifter's unique combination of decoded signals are asserted by the row decoder, the decoder level-shifter drives the corresponding word line with a memory power supply voltage for a memory power domain.