Abstract:
A memory controller is provided that drives data and a corresponding first data strobe to a plurality of endpoints. Each endpoint is configured to register the received data from the memory controller responsive to the first data strobe and then to re-register the received data responsive to a second data strobe. A clock synchronization circuit functions to keep the received first data strobe at one of the endpoints sufficiently synchronous with the second data strobe.
Abstract:
A method for data synchronization is provided according to certain embodiments. The method comprises receiving data, a data clock signal, and a clean clock signal, sampling the data using the data clock signal, synchronizing the sampled data with the clean clock signal, and outputting the synchronized sampled data. The method also comprises tracking a phase drift between the data clock signal and the clean clock signal, and pulling in the output of the synchronized sampled data by one clock cycle of the clean clock signal if the tracked phase drift reaches a first value in a first direction.
Abstract:
Techniques are described that embed a digital assisted regulator with an LDO regulator on a chip without requiring a capacitor external to the chip and to regulate a voltage without undershoot. The digital assisted regulator responds to information regarding operation of the LDO regulator and to a signal that provides advance notification of a load change. When the advance notification signal is received, the digital assisted regulator pulls a circuit's supply voltage up to a chip's incoming supply voltage. When the correct operating voltage has been reached and any undershoot problem removed, the digital assisted regulator balances the current it provides with the current provided by the LDO regulator, to allow a quick response time for other load changes. Also, bandwidth of an LDO regulator may be expanded by use of an advance notice signal to increase bias current of an LDO output device to meet an upcoming load change.
Abstract:
A level-shifter is provided with a first transistor and a second transistor. The first transistor functions to discharge an internal node responsive to an assertion of an inverted input signal to a first power supply voltage. A second transistor functions to discharge an inverted level-shifter output signal responsive to an assertion of an input signal to the first power supply voltage. An inverter inverts the inverted level-shifter output signal to form a level-shifter output signal that is asserted to a second power supply voltage responsive to the assertion of the input signal.
Abstract:
A voltage droop reduction circuit generally including a loop coupled to an output of a voltage regulator is provided. The loop includes a first current amplifier. The voltage droop reduction circuit may also include a first capacitor coupled between the output of the voltage regulator and an input of the first current amplifier.
Abstract:
A hybrid pulse-width control circuit is provided that includes a ramp voltage generator for generating a ramp voltage signal. A clock pulse generator asserts an output clock signal responsive to the ramp voltage signal equaling a reference voltage.
Abstract:
An apparatus for sharing a serial communication port between a plurality of communication channels is described. The apparatus comprises a transceiver that manages communications over the serial communication port. The apparatus also includes a multiplexer coupled to the transceiver, wherein the multiplexer multiplexes the plurality of communication channels. The apparatus also includes identification information circuitry coupled to the multiplexer, wherein the identification information circuitry adds identification information to data from the plurality of communication channels that enables the plurality of communication channels to share the serial communication port. The serial communications port and the multiplexer permit communication between integrated circuits that meet at least one latency metric for the plurality of communication channels when the plurality of communication channels are active.
Abstract:
A memory controller is provided that drives data and a corresponding first data strobe to a plurality of endpoints. Each endpoint is configured to register the received data from the memory controller responsive to the first data strobe and then to re-register the received data responsive to a second data strobe. A clock synchronization circuit functions to keep the received first data strobe at one of the endpoints sufficiently synchronous with the second data strobe.
Abstract:
A clock synchronization circuit includes a multi-phase clock generator to generate a plurality of delayed clocks, each delayed clock having a unique delay with regard to a source clock. The clock synchronization circuit further includes a selection circuit that selects one of the delayed clocks according to a phase error to form a local clock driven into a local clock path and received at the clock synchronization circuit as a received local clock. The selection circuit determines the phase error by comparing the received local clock to a reference clock.
Abstract:
In one embodiment, a memory interface comprises a cleanup phase-locked loop (PLL) configured to receive a reference clock signal, and to generate a clean clock signal based on the reference clock signal. The memory interface also comprises a synchronization circuit configured to receive data, a data clock signal, and the clean clock signal, wherein the synchronization circuit is further configured to sample the data using the data clock signal, and to synchronize the sampled data with the clean clock signal.