Abstract:
A test element for determining a body fluid is provided. The test element, in particular for determining the blood glucose level, includes a detection region which is charged with a reagent sensitive to the body fluid. A function element is arranged in or adjacent to the detection region for detecting at least one status parameter for the detection region, such that the functional element can be evaluated by means of a status measurement. A method for measuring the test element is also disclosed.
Abstract:
A method for detecting at least one analyte in a body fluid is disclosed comprising performing an optical measurement, wherein at least one test chemical is contacts the body fluid. The test chemical is an optical test chemical adapted to perform at least one detection reaction, wherein at least one optically detectable property is changed due to the detection reaction to provide at least one optical measurement value. At least one impedance measurement is generated wherein at least one alternating electrical signal is applied to the body fluid via the impedance measurement electrodes and at least one answer signal is recorded, and at least one impedance measurement value is generated. At least one evaluation step is performed wherein at least one evaluation algorithm is used, and the optical measurement value and the impedance measurement value are used for determining a concentration of the analyte in the body fluid.
Abstract:
The present invention relates to a mutant 3-hydroxybutyrate dehydrogenase (3-HBDH) with improved performance relative to the wild-type 3-HBDH, a nucleic acid encoding the mutant 3-HBDH, a cell comprising the mutant 3-HBDH or the nucleic acid, a method of determining the amount or concentration of 3-hydroxybutyrate in a sample, and a device for determining the amount or concentration of 3-hydroxybutyrate in a sample.
Abstract:
Methods and devices for determining factor Xa inhibitors, in particular heparins and fractionated or low-molecular-weight heparins, as well as direct factor Xa inhibitors in blood samples. The methods include contacting a blood sample with a detection reagent that contains at least one thrombin substrate having a peptide residue that can be cleaved by thrombin and is amidically bound via the carboxyl end to an electrogenic substance, and with a known amount of factor X reagent and an activator reagent which induces the conversion of factor X into factor Xa. Subsequently, in a second step, the amount or activity of the electrogenic substance that is cleaved from the thrombin substrate by the factor Xa-mediated thrombin activation and/or the time course thereof is determined as the measurement signal using electrochemical methods. In a third step, the amount of the factor Xa inhibitor in the sample of the blood to be analyzed or a measured quantity that correlates therewith, in particular a clotting time that correlates therewith, is determined on the basis of this measurement signal.
Abstract:
A method for detecting at least one analyte by electrochemical detection, a working electrode of an analyte sensor and an analyte sensor for detecting at least one analyte in a sample by electrochemical detection. The method comprises contacting a fluid sample suspected to comprise the at least one analyte with the surface of an electrode comprising a binding agent capable of binding to the analyte; contacting the fluid sample with a detection agent comprising a further binding agent capable of binding to the analyte and a label, the label comprising a metal nanoparticle with a standard redox potential E° between 0 V and 1.2 V forming a detection complex on the surface of the electrode comprising the binding agent, the detection agent and the analyte precipitating at least a part of the label onto the electrode surface; and detecting the analyte by electrochemical detection.
Abstract:
A method for determining an information on an equivalent series resistance is disclosed and comprises: generating at least one excitation voltage signal and applying the excitation voltage to at least two measurement electrodes; measuring a response signal; determining a signal flank from the response signal and determining an ohmic signal portion from one or both of shape and height of the signal flank; and determining the information on the equivalent series resistance from the ohmic signal portion.
Abstract:
The present invention relates to a mutant 3-hydroxybutyrate dehydrogenase (3-HBDH) with improved performance relative to the wild-type 3-HBDH, a nucleic acid encoding the mutant 3-HBDH, a cell comprising the mutant 3-HBDH or the nucleic acid, a method of determining the amount or concentration of 3-hydroxybutyrate in a sample, and a device for determining the amount or concentration of 3-hydroxybutyrate in a sample.
Abstract:
The invention also relates to compounds, which are useful for intra-molecular fluorescence resonance energy transfer (FRET), comprising the oxidized form of a carbaNADH-based first fluorophore and a second fluorophore that is excitable at a wave-length of between 445 to 540 nm and that has an emission maximum of greater than 560 nm, and methods, kits and compositions related thereto.
Abstract:
The present invention relates to a chemical compound or a salt or solvate thereof being a phenazine-, phenanthridine-, phenanthroline-, quinoline-, quinoxaline-, acridine- isoquinoline-, pyrazine- or pyridine-derivative comprising a conjugated π-system and a π-acceptor group, and to uses thereof. The present invention further relates to a chemistry matrix and to a test element comprising the chemical compound of the present invention. The present invention also relates to a method of determining the amount of an analyte in a test sample, comprising contacting said test sample with a chemical compound, with a chemistry matrix, or with a test element of the invention and estimating the amount of redox equivalents liberated or consumed by the chemical compound, by the chemical compound comprised in said chemistry matrix, or by the chemical compound comprised in said test element, in the presence of said test sample, thereby determining the amount of an analyte in said test sample. Moreover, the present invention relates to a system comprising a test element according to the present invention and a device comprising a sensor for measuring the amount of redox equivalents liberated or consumed.
Abstract:
Methods, devices and test elements are disclosed for detecting at least one analyte in a sample. The methods, devices and test elements are used for detecting one or more analytes such as metabolites in body fluids, especially glucose. The methods, devices and test elements correct for an interfering variable such as temperature and or hematocrit in a test element system via a correction factor based upon diffusion of a diffusable label.