Abstract:
A light emitting diode including a semiconductor stack including a lower semiconductor layer, an active layer, and an upper semiconductor layer; an upper electrode connected to the upper semiconductor layer and including an electrode pad and extensions extending from the electrode pad; and a lower electrode connected to the lower semiconductor layer. The electrode pad includes a first electrode pad having an elongated shape, disposed along a first side of the upper semiconductor layer, and covering the upper semiconductor layer near the first side of the upper semiconductor layer, and the extensions include an edge extension extending along an edge of the upper semiconductor layer in the electrode pad and surrounding a luminous region and middle extensions extending from the edge extension or the electrode pad and dividing the luminous region into a plurality of luminous regions.
Abstract:
A light emitting device for a display including a light emitting structure including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer, and having a side surface exposing the active layer, in which a portion of the second conductivity type semiconductor layer and the active layer along an edge of the light emitting structure is insulative in a thickness direction to define an insulation region, and the insulation region includes implanted ions.
Abstract:
A manufacturing method of a semiconductor substrate includes forming a sacrificial layer on an upper surface of a base substrate, etching the sacrificial layer to form a plurality of concave portions and a plurality of convex portions, forming a growth suppression layer on the sacrificial layer, removing a portion of the growth suppression layer to expose an upper surface of the convex portion of the sacrificial layer, growing a semiconductor layer on the sacrificial layer, and separating the semiconductor layer from the sacrificial layer. The convex portions as a whole have a honeycomb shape, and the concave portion has a hexagonal shape, when viewed in a plan view.
Abstract:
A light emitting diode including a side reflection layer. The light emitting diode includes: a semiconductor stack and a light exit surface having a roughened surface through which light generated from an active layer is emitted; side surfaces defining the light exit surface; and a side reflection layer covering at least part of the side surfaces. The light exit surface is disposed over a first conductivity type semiconductor layer opposite to the ohmic reflection layer, all layers from the active layer to the light exit surface are formed of gallium nitride-based semiconductors, and a distance from the active layer to the light exit surface is 50 μm or more.
Abstract:
Exemplary embodiments of the present invention relate to a method of growing gallium nitride-based semiconductor layers through metal-organic chemical vapor deposition, including disposing a substrate in a chamber, growing a first conductivity-type gallium nitride-based semiconductor layer on the substrate at a first chamber pressure, growing a gallium nitride-based active layer on the first conductivity-type gallium nitride-based semiconductor layer at a second chamber pressure higher than the first chamber pressure, and growing a second conductivity-type gallium nitride-based semiconductor layer on the active layer at a third chamber pressure lower than the second chamber pressure.
Abstract:
A light emitting diode includes an n-type nitride semiconductor layer, an active layer located on the n-type nitride semiconductor layer, and a p-type nitride semiconductor layer located on the active layer. The active layer has a single structure of a multi-quantum well in which a plurality of barrier layers and a plurality of well layers are stacked, and the active layer emits white light.
Abstract:
A light-emitting device includes a light generating portion including an active layer interposed between a first conductivity type layer and a second conductivity type layer. The active layer generates light. The light-emitting device further includes a light guide layer disposed on an optical path of light generated from the active layer. The light guide layer includes a textured structure on the optical path. The light guide layer can have a same conductivity type as the first conductivity type layer.
Abstract:
A display apparatus includes multiple pixels. The pixels can emit one or more colors of light. Light of the same color emitted by two or more of the pixels can have wavelengths that differ by no more than one percent. The pixels can include a stacked structure including two or more subpixels, with each subpixel emitting light of a different color than the other subpixels in the stacked structure.
Abstract:
A lighting apparatus includes a light emitting diode, in which the light emitting diode includes an n-type nitride semiconductor layer, an active layer located on the n-type nitride semiconductor layer, and a p-type nitride semiconductor layer located on the active layer. The light emitting diode emits light that varies from yellow light to white light depending on a driving current.
Abstract:
A light emitting diode includes an n-type nitride semiconductor layer, a V-pit generation layer located over the n-type nitride semiconductor layer and having a V-pit, an active layer located on the V-pit generation layer, and a p-type nitride semiconductor layer located on the active layer. The active layer includes a well layer, which includes a first well layer portion formed along a flat surface of the V-pit generation layer and a second well layer portion formed in the V-pit of the V-pit generation layer. The active layer emits light having at least two peak wavelengths at a single chip level.