Abstract:
An electronic device includes a support board having a mounting face and an integrated circuit chip mounted on the mounting face. An encapsulation block embeds the integrated circuit chip, the encapsulation block extending above the integrated circuit chip and around the integrated circuit chip on the mounting face of the support board. The encapsulation block includes a front face with a hole passing through the encapsulation block to uncovering at least part of an electrical contact. A layer made of an electrically conducting material fills the hole to make electrical connection to the electrical contact and further extends over the front face of the encapsulation block.
Abstract:
An electronic device includes a supporting substrate having a front mounting face and an electrical connection network. An integrated circuit chip is mounted to the mounting face and is electrically connected to the electrical connection network. A primary encapsulation block embeds the integrated circuit chip and extends above and around the integrated circuit chip on the mounting face of the supporting substrate. An opening is provided in the primary encapsulation block to at least partially uncover an electrical contact. An additional wire made from an electrically conductive material has an end that is electrically connected to the electrical contact. An additional encapsulation block above the primary encapsulation block embeds the additional wire.
Abstract:
An electronic device includes a carrier substrate with an electronic IC chip mounted on top of the carrier substrate. An encapsulation block on top of the front face of the carrier substrate embeds the IC chip. The encapsulation block has a through-void for positioning and confinement that extends through the encapsulation block to the top of the carrier substrate. At least one electronic component is positioned within the through-void and mounted to the top of the carrier substrate. Solder bumps or pads are located within the through-void to electrically connect the at least one electronic component to the carrier substrate.
Abstract:
An electronic device includes a support plate having a mounting face and an electrical connection network. An integrated circuit chip is mounted on the mounting face and linked to the electrical connection network. An en encapsulation block embeds the integrated circuit chip. An additional element made of an electrically conductive material is at least partly embedded within the encapsulation block. The additional conductive element has a main portion extending parallel to the support plate and has a secondary portion that is linked electrically to the integrated circuit chip. An opening is formed in the encapsulation block, and the secondary portion extends into that opening to make the electrical link. The additional conductive element may be an antenna.
Abstract:
An electronic device includes a supporting substrate having a front mounting face and an electrical connection network. An integrated circuit chip is mounted to the mounting face and is electrically connected to the electrical connection network. A primary encapsulation block embeds the integrated circuit chip and extends above and around the integrated circuit chip on the mounting face of the supporting substrate. An opening is provided in the primary encapsulation block to at least partially uncover an electrical contact. An additional wire made from an electrically conductive material has an end that is electrically connected to the electrical contact. An additional encapsulation block above the primary encapsulation block embeds the additional wire.
Abstract:
An electronic device includes a substrate having an external surface, and an integrated circuit over the external surface of the substrate. The substrate is provided with an electrical connection network including electrical links for linking the integrated circuit to another electrical device. Some of the electrical links include an impedance-compensating inductor on an external surface of the substrate.
Abstract:
An electronic device includes a substrate having an external surface, and an integrated circuit over the external surface of the substrate. The substrate is provided with an electrical connection network including electrical links for linking the integrated circuit to another electrical device. Some of the electrical links include an impedance-compensating inductor on an external surface of the substrate.
Abstract:
An electronic device includes a support plate having a mounting face and an electrical connection network. An integrated circuit chip is mounted on the mounting face and linked to the electrical connection network. An en encapsulation block embeds the integrated circuit chip. An additional element made of an electrically conductive material is at least partly embedded within the encapsulation block. The additional conductive element has a main portion extending parallel to the support plate and has a secondary portion that is linked electrically to the integrated circuit chip. An opening is formed in the encapsulation block, and the secondary portion extends into that opening to make the electrical link. The additional conductive element may be an antenna.
Abstract:
An electronic device includes a substrate wafer made of an insulating material and having an electrical connection network. An integrated circuit chip is mounted to a top side of the substrate wafer. The substrate wafer contains an internal duct. The duct is formed by a covered trench located in the top side of the substrate wafer. The trench contains a thermally conductive material, for example being a fluid. Openings in the top side of the substrate wafer that are offset from the trench permit the making of an electrical connection between the integrated circuit and the electrical connection network.
Abstract:
An electrical connection wire connects an electrical connection pad of an electrical chip and an electrical connection pad of a carrier substrate to which the electronic chip is mounted. A dielectric layer surrounds at least the bonding wire. The dielectric layer may be a dielectric sheath or a hardened liquid dielectric material. A dielectric material may also cover at least a portion of the electrical chip and carrier substrate. A liquid electrically conductive material is deposited and hardened to form a local conductive shield surrounding the dielectric layer at the bonding wire.