Abstract:
An inertial sensor for sensing an external acceleration includes: a first and a second proof mass; a first and a second capacitor formed between first and second fixed electrodes and the first proof mass; a third and a fourth capacitor formed between third and fourth fixed electrodes and the second proof mass; a driving assembly configured to cause an antiphase oscillation of the first and second proof masses; a biasing circuit configured to bias the first and third capacitors, thus generating first variation of the oscillation frequency in a first time interval, and to bias the second and fourth capacitors, thus generating first variation of the oscillation frequency in a second time interval; a sensing assembly, configured to generate an differential output signal which is a function of a difference between a value of the oscillating frequency during the first time interval and a value of the oscillating frequency during the second time interval. Such differential output signal can be correlated to the value and direction of the external acceleration.
Abstract:
A microelectromechanical device includes: a body accommodating a microelectromechanical structure; and a cap bonded to the body and electrically coupled to the microelectromechanical structure through conductive bonding regions. The cap including a selection module, which has first selection terminals coupled to the microelectromechanical structure, second selection terminals, and at least one control terminal, and which can be controlled through the control terminal to couple the second selection terminals to respective first selection terminals according, selectively, to one of a plurality of coupling configurations corresponding to respective operating conditions.
Abstract:
A micromechanical device includes a semiconductor body, a first mobile structure, an elastic assembly, coupled to the first mobile structure and to the semiconductor body and adapted to undergo deformation in a direction, and at least one abutment element. The elastic assembly is configured to enable an oscillation of the first mobile structure as a function of a force applied thereto. The first mobile structure, the abutment element and the elastic assembly are arranged with respect to one another in such a way that: when the force is lower than a force threshold, the elastic assembly operates with a first elastic constant; and when the force is greater than the threshold force, then the first mobile structure is in contact with the abutment element, and a deformation of the elastic assembly is generated, which operates with a second elastic constant different from the first elastic constant.
Abstract:
A MEMS accelerometer includes a supporting structure, at least one deformable group and one second deformable group, which include, respectively, a first deformable cantilever element and a second deformable cantilever element, which each have a respective first end, which is fixed to the supporting structure, and a respective second end. The first and second deformable groups further include, respectively, a first piezoelectric detection structure and a second piezoelectric detection structure. The MEMS accelerometer further includes: a first mobile mass and a second mobile mass, which are fixed, respectively, to the second ends of the first and second deformable cantilever elements and are vertically staggered with respect to the first and second deformable cantilever elements, respectively; and a first elastic structure, which elastically couples the first and second mobile masses.
Abstract:
A MEMS acoustic transducer provided with: a substrate of semiconductor material, having a back surface and a front surface opposite with respect to a vertical direction; a first cavity formed within the substrate, which extends from the back surface to the front surface; a membrane which is arranged at the upper surface, suspended above the first cavity and anchored along a perimeter thereof to the substrate; and a combfingered electrode arrangement including a number of mobile electrodes coupled to the membrane and a number of fixed electrodes coupled to the substrate and facing respective mobile electrodes for forming a sensing capacitor, wherein a deformation of the membrane as a result of incident acoustic pressure waves causes a capacitive variation of the sensing capacitor. In particular, the combfingered electrode arrangement lies vertically with respect to the membrane and extends parallel thereto.
Abstract:
A microelectromechanical gyroscope includes: a substrate; a stator sensing structure fixed to the substrate; a first mass elastically constrained to the substrate and movable with respect to the substrate in a first direction; a second mass elastically constrained to the first mass and movable with respect to the first mass in a second direction; and a third mass elastically constrained to the second mass and to the substrate and capacitively coupled to the stator sensing structure, the third mass being movable with respect to the substrate in the second direction and with respect to the second mass in the first direction.
Abstract:
A microelectromechanical device includes: a body accommodating a microelectromechanical structure; and a cap bonded to the body and electrically coupled to the microelectromechanical structure through conductive bonding regions. The cap including a selection module, which has first selection terminals coupled to the microelectromechanical structure, second selection terminals, and at least one control terminal, and which can be controlled through the control terminal to couple the second selection terminals to respective first selection terminals according, selectively, to one of a plurality of coupling configurations corresponding to respective operating conditions.
Abstract:
The present disclosure is directed to a dual-mode control circuit for a microelectromechanical system (MEMS) gyroscope. A control circuit is coupled to a Lissajous frequency modulated (LFM) gyroscope to control amplitude of oscillation of a mass along two directions. The amplitude of oscillation is controlled by an automatic gain control (AGC) loop which allows the same amplitude of oscillation in both directions. An AGC is implemented with a combination of proportional control (P-type) and integral control (I-type) paths that maintain the correct Lissajous pattern of the oscillation of the mass. The AGC may include a dual-mode stage which is able to switch between a P-type control path and an I-type control path based on the operation of the LFM gyroscope. A fast start-up phase may be controlled by the P-type control path while the I-type path is pre-charged to be ready to use in a steady state condition.
Abstract:
A closed-loop microelectromechanical accelerometer includes a substrate of semiconductor material, an out-of-plane sensing mass and feedback electrodes. The out-of-plane sensing mass, of semiconductor material, has a first side facing the supporting body and a second side opposite to the first side. The out-of-plane sensing mass is also connected to the supporting body to oscillate around a non-barycentric fulcrum axis parallel to the first side and to the second side and perpendicular to an out-of-plane sensing axis. The feedback electrodes are capacitively coupled to the sensing mass and are configured to apply opposite electrostatic forces to the sensing mass.
Abstract:
Button device comprising: a fixed support structure; a movable structure, laterally surrounded by said support structure and configured to deform at least in part under the action of an external force; and a fluid-tight protection cap. The movable structure includes a piston element, deformable elements having piezoelectric transducers arranged thereon, and anchor elements that couple the piston element to the deformable elements. When an external force acts on the piston element, the anchor elements transfer this force to the deformable elements and to the piezoelectric transducers, so as to sense the extent of this force.