Abstract:
Various embodiments provide a memory cell that includes a vertical selection gate, a floating gate extending above the substrate, wherein the floating gate also extends above a portion of the vertical selection gate, over a non-zero overlap distance, the memory cell comprising a doped region implanted at the intersection of a vertical channel region extending opposite the selection gate and a horizontal channel region extending opposite the floating gate.
Abstract:
A MOSFET transistor includes, on a semiconductor layer, a stack of a gate insulator and of a gate region on the gate insulator. The gate region has a first gate portion and a second gate portion between the first gate portion and the gate insulator. The first gate portion has a first length in a first lateral direction of the transistor. The second gate portion has a second length in the first lateral direction that is shorter than the first length.
Abstract:
A semiconductor substrate includes excavations which form trenches sunk. A capacitive element includes: a first dielectric envelope conforming to sides and bottoms of the trenches; a first semiconductor layer conforming to a surface of the first dielectric envelope in the trenches; a second dielectric envelope conforming to a surface of the first semiconductor layer in the trenches; and a second semiconductor layer conforming to a surface of the second dielectric envelope in the trenches.
Abstract:
The present disclosure relates to a method of making a memory on semiconductor substrate, comprising: at least one data line, at least one selection line, at least one reference line, at least one memory cell comprising a select transistor having a control gate connected to the selection line, a first conduction terminal connected to a variable impedance element, the select transistor and the variable impedance element coupling the reference line to the data line, the select transistor comprising an embedded vertical gate produced in a trench formed in the substrate, and a channel region opposite a first face of the trench, between a first deep doped region and a second doped region on the surface of the substrate coupled to the variable impedance element.
Abstract:
The present disclosure relates to a memory on semiconductor substrate, comprising: at least one data line, at least one selection line, at least one reference line, at least one memory cell comprising a select transistor having a control gate connected to the selection line, a first conduction terminal connected to a variable impedance element, the select transistor and the variable impedance element coupling the reference line to the data line, the select transistor comprising an embedded vertical gate produced in a trench formed in the substrate, and a channel region opposite a first face of the trench, between a first deep doped region and a second doped region on the surface of the substrate coupled to the variable impedance element.
Abstract:
The present disclosure relates to a memory cell that includes a vertical selection gate, a floating gate extending above the substrate, wherein the floating gate also extends above a portion of the vertical selection gate, over a non-zero overlap distance, the memory cell comprising a doped region implanted at the intersection of a vertical channel region extending opposite the selection gate and a horizontal channel region extending opposite the floating gate.
Abstract:
A semiconductor substrate includes excavations which form trenches sunk. A capacitive element includes: a first dielectric envelope conforming to sides and bottoms of the trenches; a first semiconductor layer conforming to a surface of the first dielectric envelope in the trenches; a second dielectric envelope conforming to a surface of the first semiconductor layer in the trenches; and a second semiconductor layer conforming to a surface of the second dielectric envelope in the trenches.
Abstract:
A MOS transistor is produced on and in an active zone and included a source region and a drain region. The active zone has a width measured transversely to a source-drain direction. A conductive gate region of the MOS transistor includes a central zone and, at a foot of the central zone, at least one stair that extends beyond the central zone along at least an entirety of the width of the active zone.
Abstract:
A MOS transistor is produced on and in an active zone which includes a source region and a drain region. The active zone is surrounded by an insulating region. A conductive gate region of the transistor has two flanks which extend transversely to a source-drain direction, and the conductive gate region overlaps two opposite edges of the active zone act overlap zones. The conductive gate region includes, at a location of at least one overlap zone, at least one conductive tag which projects from at least one flank at a foot of the conductive gate region. The conductive tag covers a part of the active zone and a part of the insulating region.
Abstract:
Various embodiments provide a memory cell that includes a vertical selection gate, a floating gate extending above the substrate, wherein the floating gate also extends above a portion of the vertical selection gate, over a non-zero overlap distance, the memory cell comprising a doped region implanted at the intersection of a vertical channel region extending opposite the selection gate and a horizontal channel region extending opposite the floating gate.