摘要:
A semiconductor laser device comprising a multi-layered semiconductor crystal containing an active region for laser oscillation, wherein the extended portions of said active region which are adjacent to both sides of one facet having the width of a selected value of said device constitute light-absorbing regions by which light in a high-order transverse mode is absorbed to a greater extent than that in a fundamental transverse mode, thereby achieving laser oscillation in a stable fundamental transverse mode up to a high output power.
摘要:
A semiconductor laser device is disclosed which comprises a semiconductor substrate and a multi-layered crystal structure disposed on the substrate, the multi-layered crystal structure containing a first cladding layer, a quantum-well active layer for laser oscillation, and a second cladding layer with a striped ridge portion for current injection, wherein the difference in the effective refractive index between the region underneath the striped ridge portion and the adjacent regions thereto is greater in the vicinity of at least one of the facets than inside of the facets.
摘要:
A method for growing a compound semiconductor layer of Al.sub.x Ga.sub.1-x As (0.ltoreq.x.ltoreq.1) on a compound semiconductor substrate uses a molecular beam epitaxial apparatus, the method including the steps of providing the substrate having a GaAs layer on an upper surface thereof, thermally etching the GaAs layer by heating the substrate at a temperature and irradiating the GaAs layer with a gallium molecular beam and an arsenic molecular beam to expose the upper surface of the substrate, and growing the Al.sub.x Ga.sub.1-x As (0.ltoreq.x.ltoreq.1) layer on the upper surface of the substrate.
摘要翻译:在化合物半导体衬底上生长Al x Ga 1-x As(0≤x≤1)的化合物半导体层的方法使用分子束外延装置,该方法包括以下步骤:将具有GaAs层的衬底 通过在温度下加热衬底并用镓分子束和砷分子束照射GaAs层来暴露衬底的上表面,并且生长Al x Ga 1-x As(0 < = x <1)层。
摘要:
An optical semiconductor device is disclosed that comprises a quantum-well structure as an active region and exhibits a nonlinear optical effect with regard to light of energy near the band gap between the allowed band edges in the active region. The quantum-well structure of this device is composed of alternate layers consisting of at least one first semiconductor layer with a thickness smaller than the de Broglie wavelength of carriers and at least two second semiconductor layers with a band gap greater than that of the first semiconductor layer, the alternate layers being formed along a crystal orientation in the zinc-blende structure. The second semiconductor layers mentioned above are of an indirect transition type.
摘要:
A semiconductor device using the quantum effect of one dimension that arises in the direction vertical to the plane of a substrate on which the device structure is disposed, wherein the plane of the substrate is substantially the (111) plane.
摘要:
A semiconductor laser device comprising a double-heterostructure that is composed of an active layer and a pair of cladding layers sandwiching the active layer therebetween, a striped structure in which current injected into the laser device is confined, the striped structure being constituted by a part of the double-heterostructure, and optical guiding layers positioned between one cladding layer and the active layer and between the active layer and the other cladding layer, wherein the resistance of one optical guiding layer positioned at the striped structure side is higher than that of the other optical guiding layer positioned opposite to the striped structure side.
摘要:
A semiconductor device comprising a (111)B single-crystalline semiconductor substrate which is misoriented toward (110), and epitaxial layers grown on the substrate by molecular beam epitaxy, whereby the crystallinity and luminescence efficiency of epitaxial layers are significantly improved.
摘要:
A semiconductor laser device comprising a substrate of a first conductivity type having a mesa; a first semiconductor layer of a second conductivity type which is formed on the upper surface of the substrate other than the mesa to form a flat plane including the top face of the mesa; a laser oscillation region which is formed on the flat plane and includes an active area for laser oscillation; and a multi-layer structure burying the laser oscillation region, the multi-layer structure comprising a high resistance layer formed on the first semiconductor layer and burying both sides of the laser oscillation region, and a second semiconductor layer of the first conductivity type formed on the high resistance layer.
摘要:
A semiconductor laser device containing a laser oscillation-operating area which comprises a Ga.sub.1-x Al.sub.x As (0.ltoreq.x.ltoreq.1) quantum well active layer, Ga.sub.1-y Al.sub.y As optical guiding layers interposing the quantum well active layer therebetween, and Ga.sub.1-z Al.sub.z As cladding layers superposed on the optical guiding layers, respectively, wherein the AlAs mole fraction y at the area of each of the optical guiding layers positioned in the vicinity of the interface of the optical guiding layers and the quantum well active layer meets the relationships y-z.gtoreq.0.3 and z-y.ltoreq.0.25.
摘要:
A semiconductor laser device comprising a substrate of a first conductivity type having a mesa; a first semiconductor layer of a second conductivity type which is formed on the upper surface of the substrate other than the mesa to form a flat plane including the top face of the mesa; a laser oscillation region which is formed on the flat plane and includes an active area for laser oscillation; and a multi-layer structure burying the laser oscillation region, the multi-layer structure comprising a high resistance layer formed on the first semiconductor layer and burying both sides of the laser oscillation region, and a second semiconductor layer of the first conductivity type formed on the high resistance layer.