Abstract:
A nonvolatile memory (NVM) device includes a data pin, a control pin, an on-die termination (ODT) pin, and a plurality of NVM memory chips commonly connected to the data pin and the control pin. A first NVM chip among the NVM chips includes an ODT circuit. The first NVM chip determines one of an ODT write mode and an ODT read mode based on a control signal received through the control pin and an ODT signal received through the ODT pin, uses the ODT circuit to perform an ODT on the data pin during the ODT write mode, and uses the ODT circuit to perform the ODT on the control pin during the ODT read mode.
Abstract:
A nonvolatile memory (NVM) device includes a data pin, a control pin, an on-die termination (ODT) pin, and a plurality of NVM memory chips commonly connected to the data pin and the control pin. A first NVM chip among the NVM chips includes an ODT circuit. The first NVM chip determines one of an ODT write mode and an ODT read mode based on a control signal received through the control pin and an ODT signal received through the ODT pin, uses the ODT circuit to perform an ODT on the data pin during the ODT write mode, and uses the ODT circuit to perform the ODT on the control pin during the ODT read mode.
Abstract:
Semiconductor devices including a protection pattern for reducing galvanic corrosion and methods of forming the semiconductor devices are provided. The semiconductor devices may include a substrate including a keep out zone (KOZ) and a plurality of interconnections, which may be disposed outside of the KOZ on the substrate. The semiconductor devices may also include a through silicon via (TSV) in the KOZ. The TSV may pass through the substrate. The semiconductor device may further include a protection pattern, which may be electrically insulated from the TSV, may be disposed in the KOZ and may include a different conductive material from the TSV. A lower end of the protection pattern may be disposed at a level higher than a lower end of the TSV.
Abstract:
A semiconductor memory device includes a peripheral circuit structure including a peripheral circuit and a first bonding pad, the first bonding pad connected to the peripheral circuit, a cell structure on the peripheral circuit structure, the cell structure including a second bonding pad bonded to the first bonding pad, and a pad structure on the cell structure. The cell structure includes a cell substrate having a first face, a second face opposite to the first face, a first contact plug extending through the cell substrate and connected to an electrode layer, and a second contact plug extending through the cell substrate and connected to the cell substrate. Each of the first contact plug and the second contact plug is connected to the pad structure, and a bypass via is in contact with the pad structure on the second face.
Abstract:
A nonvolatile memory (NVM) device includes a data pin, a control pin, an on-die termination (ODT) pin, and a plurality of NVM memory chips commonly connected to the data pin and the control pin. A first NVM chip among the NVM chips includes an ODT circuit. The first NVM chip determines one of an ODT write mode and an ODT read mode based on a control signal received through the control pin and an ODT signal received through the ODT pin, uses the ODT circuit to perform an ODT on the data pin during the ODT write mode, and uses the ODT circuit to perform the ODT on the control pin during the ODT read mode.
Abstract:
An electronic device is provided. The electronic device includes a first antenna for a first band and a second band, a second antenna for the second band and a third band and a pre-processing unit configured to generate, based on identifying a frequency band of a first signal received via the first antenna and a frequency band of a second signal received via the second antenna are the second band, a pre-processed signal by combining the first signal and the second signal based on a ratio of a weight factor, and to transmit the pre-processed signal to a first radio frequency (RF) receiver.
Abstract:
An integrated circuit device includes a substrate having a plurality of device patterns thereon. A device isolation layer is provided on the substrate, an interlayer dielectric layer is provided on the device isolation layer and the substrate, and a conductive via extends through the interlayer dielectric layer and the device isolation layer and into the substrate. A conductive via contact pad is provided on the interlayer dielectric layer in electrical contact with the conductive via. In plan view, the conductive via contact pad is confined within an area of the interlayer dielectric layer and/or an area of the device isolation layer that electrically insulates the conductive via contact pad from the substrate. Related methods and devices are also discussed.
Abstract:
An integrated circuit device includes a substrate having a plurality of device patterns thereon. A device isolation layer is provided on the substrate, an interlayer dielectric layer is provided on the device isolation layer and the substrate, and a conductive via extends through the interlayer dielectric layer and the device isolation layer and into the substrate. A conductive via contact pad is provided on the interlayer dielectric layer in electrical contact with the conductive via. In plan view, the conductive via contact pad is confined within an area of the interlayer dielectric layer and/or an area of the device isolation layer that electrically insulates the conductive via contact pad from the substrate. Related methods and devices are also discussed.
Abstract:
A nonvolatile memory (NVM) device includes a data pin, a control pin, an on-die termination (ODT) pin, and a plurality of NVM memory chips commonly connected to the data pin and the control pin. A first NVM chip among the NVM chips includes an ODT circuit. The first NVM chip determines one of an ODT write mode and an ODT read mode based on a control signal received through the control pin and an ODT signal received through the ODT pin, uses the ODT circuit to perform an ODT on the data pin during the ODT write mode, and uses the ODT circuit to perform the ODT on the control pin during the ODT read mode.
Abstract:
A three-dimensional semiconductor memory device is provided. The device may include a first substrate including a bit-line connection region and a word-line connection region, a cell array structure on the first substrate, a second substrate including a first core region and a second core region, which are respectively overlapped with the bit-line connection region and the word-line connection region, and a peripheral circuit structure on the second substrate.