Abstract:
FIG. 1 is a front perspective view of an electronic device showing our new design. FIG. 2 is a front elevation view thereof; FIG. 3 is a rear elevation view thereof; FIG. 4 is a left side elevation view thereof; FIG. 5 is a right side elevation view thereof; FIG. 6 is a top plan view thereof; FIG. 7 is a bottom plan view thereof; FIG. 8 is an enlarged view of the encircled portion in FIG. 1; FIG. 9 is an enlarged view of the encircled portion in FIG. 1; and, FIG. 10 is an enlarged view of the encircled portion in FIG. 3. The short dash-dash broken lines in the figures illustrate portions of the electronic device that form no part of the claimed design. The dot-dot-dash broken lines encircling portions of the claimed design that are illustrated in enlargements form no part of the claimed design.
Abstract:
A photoresist-removing composition includes a polar organic solvent, an alkyl ammonium hydroxide, an aliphatic amine not including a hydroxy group, and a monovalent alcohol. To manufacture a semiconductor device, a photoresist pattern may be formed on a substrate, and the photoresist-removing composition may then be applied to the photoresist pattern. To manufacture a semiconductor package, a photoresist pattern including a plurality of via holes may be formed on a substrate. A plurality of conductive posts including a metal may be formed inside the plurality of via holes, and the photoresist pattern may be removed by applying a photoresist-removing composition of the inventive concept to the photoresist pattern. A semiconductor chip may be adhered to the substrate between the respective conductive posts.
Abstract:
A method of manufacturing a semiconductor device is provided. The method includes providing a first layer having a first surface and a second layer having a second surface orthogonal to the first surface in a vertical direction, forming an inhibitor layer conformally on the first surface and the second surface, exposing the second surface by selectively removing the inhibitor layer on the second surface among the first surface and the second surface, the exposing of the second surface may include selectively removing an edge portion of the inhibitor layer on the first surface, the edge portion contacting the second surface, and forming an interest layer on the exposed second surface.
Abstract:
A method of etching a metal barrier layer and a metal layer is provided. The method includes forming the metal barrier layer and the metal layer on a substrate, and using an etching composition to etch the metal barrier layer and the metal layer. The etching composition may include an oxidant selected from nitric acid, bromic acid, iodic acid, perchloric acid, perbromic acid, periodic acid, sulfuric acid, methane sulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, or a combination thereof, a metal etching inhibitor including a compound expressed by Chemical Formula 1, and a metal oxide solubilizer selected from phosphoric acid, phosphate, carboxylic acid having 3 to 20 carbon atoms, or a combination thereof.
Abstract:
Embodiments of the inventive concepts provide a method of manufacturing a semiconductor device and a cleaning composition for an adhesive layer. The method includes preparing a semiconductor substrate to which an adhesive layer adheres, removing the adhesive layer from the semiconductor substrate, and applying a cleaning composition to the semiconductor substrate to remove a residue of the adhesive layer. The cleaning composition includes a solvent including a ketone compound and having a content that is equal to or greater than 40 wt % and less thaadminn 90 wt %, quaternary ammonium salt, and primary amine.
Abstract:
Embodiments of the inventive concepts provide a method of manufacturing a semiconductor device and a cleaning composition for an adhesive layer. The method includes preparing a semiconductor substrate to which an adhesive layer adheres, removing the adhesive layer from the semiconductor substrate, and applying a cleaning composition to the semiconductor substrate to remove a residue of the adhesive layer. The cleaning composition includes a solvent including a ketone compound and having a content that is equal to or greater than 40 wt % and less than 90 wt %, quaternary ammonium salt, and primary amine.
Abstract:
An etchant composition includes an inorganic acid, a siloxane compound, an ammonium compound, and a solvent, wherein the siloxane compound is represented by General Formula (I): A method of fabricating an integrated circuit device includes forming a structure on a substrate, the structure having a surface on which an oxide film and a nitride film are exposed; and selectively removing the nitride film from the oxide film and the nitride film by bringing the etchant composition into contact with the structure.
Abstract:
In a method of manufacturing an integrated circuit (IC) device, a photomask is wet-processed using a cleaning composition comprising an organic acid, an oxidizing agent, and deionized water (DIW).