Abstract:
A semiconductor light emitting device includes a light-transmissive substrate, a light-transmissive buffer layer disposed on the light-transmissive substrate, and a light emitting structure. The light-transmissive buffer layer includes a first layer and a second layer having different refractive indices and disposed alternately at least once. The light emitting structure includes a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially disposed on the buffer layer.
Abstract:
An LED device includes a transparent substrate having a bar-like shape and having a first surface and a second surface opposed thereto, a plurality of LED chips mounted on the first surface of the transparent substrate and electrically connected to each other, each of the plurality of LED chips having a reflective layer disposed on a surface mounted in the transparent substrate, a first connection terminal and a second connection terminal disposed on opposing ends of the transparent substrate and electrically connected to the plurality of LED chips, a bonding layer interposed between the plurality of LED chips and the transparent substrate and including a metal filler, and a wavelength conversion portion covering the first surface and the second surface of the transparent substrate and the plurality of LED chips.
Abstract:
A semiconductor light-emitting device includes a substrate, a first reflective layer disposed on the substrate and including first openings, a first conductivity-type semiconductor layer grown in and extending from the first openings and connected on the first reflective layer, a second reflective layer disposed on the first conductivity-type semiconductor layer and including second openings having lower surfaces disposed to be spaced apart from upper surfaces of the first openings, and a plurality of light-emitting nanostructures including nanocores extending from the second openings and formed of a first conductivity-type semiconductor material, and active layers and second conductivity-type semiconductor layers sequentially disposed on the nanocores.
Abstract:
A semiconductor light-emitting device includes a substrate, a first reflective layer disposed on the substrate and including first openings, a first conductivity-type semiconductor layer grown in and extending from the first openings and connected on the first reflective layer, a second reflective layer disposed on the first conductivity-type semiconductor layer and including second openings having lower surfaces disposed to be spaced apart from upper surfaces of the first openings, and a plurality of light-emitting nanostructures including nanocores extending from the second openings and formed of a first conductivity-type semiconductor material, and active layers and second conductivity-type semiconductor layers sequentially disposed on the nanocores.
Abstract:
A semiconductor light emitting device includes a substrate; a base layer made of a first conductivity-type semiconductor and disposed on the substrate; a plurality of nanoscale light emitting units disposed in a region of an upper surface of the base layer and including a first conductivity-type nano-semiconductor layer protruding from the upper surface of the base layer, a nano-active layer disposed on the first conductivity-type nano-semiconductor layer, and a second conductivity-type nano-semiconductor layer disposed on the nano-active layer; and a light emitting laminate disposed in a different region of the upper surface of the base layer and having a laminated active layer.
Abstract:
There are provided a semiconductor light emitting device and a method of manufacturing the same. A method of manufacturing a plurality of light emitting nanostructures of a semiconductor light emitting device includes: forming a plurality of first conductivity type semiconductor cores on a first type semiconductor seed layer, each first conductivity type semiconductor core formed through an opening in an insulating film; forming an active layer on each first conductivity type semiconductor core; forming, using a mask pattern, a second conductivity type semiconductor layer on each active layer to cover the active layer, to form a plurality of light emitting nanostructures; and forming an electrode on the plurality of light emitting nanostructures.
Abstract:
A nitride semiconductor light emitting device includes a substrate, a multi-layer structure, a light-transmitting concave-convex structure and a light emitting structure. The multi-layer structure has layers of a first layer and a second layer such that the first and second layers have different refractive indexes and are alternately stacked. The concave-convex structure is disposed in an upper surface of the multi-layer structure and includes a light-transmitting material. The light emitting structure is disposed on the multi-layer structure and includes a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer.