Abstract:
There are disclosed a group III nitride nanorod light emitting device and a method of manufacturing thereof. The group III nitride nanorod light emitting device includes a substrate, an insulating film formed on the substrate, and including a plurality of openings exposing parts of the substrate and having different diameters, and first conductive group III nitride nanorods having different diameters, respectively formed in the plurality of openings, wherein each of the first conductive group III nitride nanorods has an active layer and a second conductive semiconductor layer sequentially formed on a surface thereof.
Abstract:
A chip mounting method includes providing a first substrate including a light transmissive substrate having first and second surfaces, a sacrificial layer provided on the first surface, and a plurality of chips bonded to the sacrificial layer, obtaining first mapping data by testing the chips, the first mapping data defining coordinates of normal chips and defective chips among the chips, disposing a second substrate below the first surface, disposing the normal chips on the second substrate by radiating a first laser beam to positions of the sacrificial layer corresponding to the coordinates of the normal chips, based on the first mapping data, to remove portions of the sacrificial layer thereby separating the normal chips from the light transmissive substrate, and mounting the normal chips on the second substrate by radiating a second laser beam to a solder layer of the second substrate.
Abstract:
There is provided a semiconductor light emitting device including a first conductivity-type semiconductor base layer and a plurality of light emitting nanostructures disposed to be spaced apart from one another on the first conductivity-type semiconductor base layer, each light emitting nanostructure including a first conductivity-type semiconductor core, an active layer, an electric charge blocking layer, and a second conductivity-type semiconductor layer, respectively, wherein the first conductivity-type semiconductor core has different first and second crystal planes in crystallographic directions.
Abstract:
There is provided a semiconductor light-emitting device including a base layer formed of a first conductivity-type semiconductor material, and a plurality of light-emitting nanostructures disposed on the base layer to be spaced apart from each other, and including first conductivity-type semiconductor cores, active layers, and second conductivity-type semiconductor layers. The first conductivity-type semiconductor cores include rod layers extending upwardly from the base layer, and capping layers disposed on the rod layers. Heights of the rod layers are different in at least a portion of the plurality of light-emitting nanostructures, and heights of the capping layers are different in at least a portion of the plurality of light-emitting nanostructures.
Abstract:
A nanostructure semiconductor light emitting device may include a first conductivity-type semiconductor base layer, a mask layer disposed on the base layer and having a plurality of openings exposing portions of the base layer, a plurality of light emitting nanostructures disposed in the plurality of openings, and a polycrystalline current suppressing layer disposed on the mask layer. At least a portion of the polycrystalline current suppressing layer is disposed below the second conductivity-type semiconductor layer. Each light emitting nanostructure includes a first conductivity-type semiconductor nanocore, an active layer, and a second conductivity-type semiconductor layer.
Abstract:
There is provided a semiconductor light emitting device including: a substrate and a nanostructures spaced apart from one another on the substrate. The nanostructures includes a first conductivity-type semiconductor layer core, an active layer, and a second conductivity-type semiconductor layer. A filler fills spaces between the nanostructures and is formed to be lower than the plurality of nanostructures. An electrode is formed to cover upper portions of the nanostructures and portions of lateral surfaces of the nanostructures and electrically connected to the second conductivity-type semiconductor layer.
Abstract:
A light emitting diode display device includes a display board comprising a plurality of unit pixels, a drive circuit board including a plurality of drive circuit regions corresponding to the plurality of unit pixels, and a plurality of bumps interposed between the plurality of unit pixels and the plurality of drive circuit regions. The plurality of unit pixels comprises a first unit pixel including a first P electrode. The plurality of drive circuit regions comprises a first drive circuit region corresponding to the first unit pixel and a first pad connected to a first drive transistor, the plurality of bumps includes a first solder in contact with the first pad, and a first bump on the first solder and including a first filler in contact with the first P electrode, the first solder includes at least one of tin and silver, and the first filler includes copper or nickel.
Abstract:
A light emitting apparatus includes at least one first light source and at least one second light source. The at least one first light source and at least one second light source may be configured to emit white light and cyan light, respectively, such that a ratio of luminous flux of the white light to luminous flux of the cyan light ranges from 19:1 to 370:1, based on a common magnitude of electrical current being applied to each of the at least one first light source and the at least one second light source.
Abstract:
A semiconductor light emitting device includes a substrate; a base layer made of a first conductivity-type semiconductor and disposed on the substrate; a plurality of nanoscale light emitting units disposed in a region of an upper surface of the base layer and including a first conductivity-type nano-semiconductor layer protruding from the upper surface of the base layer, a nano-active layer disposed on the first conductivity-type nano-semiconductor layer, and a second conductivity-type nano-semiconductor layer disposed on the nano-active layer; and a light emitting laminate disposed in a different region of the upper surface of the base layer and having a laminated active layer.
Abstract:
There is provided a semiconductor light emitting device including a first conductivity-type semiconductor base layer and a plurality of light emitting nanostructures disposed to be spaced apart from one another on the first conductivity-type semiconductor base layer, each light emitting nanostructure including a first conductivity-type semiconductor core, an active layer, an electric charge blocking layer, and a second conductivity-type semiconductor layer, respectively, wherein the first conductivity-type semiconductor core has different first and second crystal planes in crystallographic directions.