Abstract:
A semiconductor ultraviolet light emitting device includes: a substrate; a buffer layer disposed on the substrate and comprising a plurality of nanorods between which a plurality of voids are formed; a first conductive nitride layer disposed on the buffer layer and having a first conductive AlGaN layer; an active layer disposed on the first conductive nitride layer and having a quantum well including AlxInyGa1-x-yN (0≦x+y≦1, 0≦y
Abstract translation:一种半导体紫外线发射装置,包括:基板; 缓冲层,其设置在所述基板上并且包括多个纳米棒,在所述多个纳米棒之间形成有多个空隙; 第一导电氮化物层,设置在所述缓冲层上并具有第一导电AlGaN层; 设置在第一导电氮化物层上并具有包括Al x In y Ga 1-x-y N(0≤x+y≤1,0≤y<0.15)的量子阱的有源层)。 以及设置在所述有源层上并具有第二导电AlGaN层的第二导电氮化物层,其中所述多个纳米棒满足3.5≤n(λ)×D /λ≤5.0,其中λ表示由所述活性物质产生的光的波长 层,n(λ)表示波长为λ的多个纳米棒的折射率,D表示多个纳米棒的直径。
Abstract:
A semiconductor light emitting device includes a substrate; a base layer made of a first conductivity-type semiconductor and disposed on the substrate; a plurality of nanoscale light emitting units disposed in a region of an upper surface of the base layer and including a first conductivity-type nano-semiconductor layer protruding from the upper surface of the base layer, a nano-active layer disposed on the first conductivity-type nano-semiconductor layer, and a second conductivity-type nano-semiconductor layer disposed on the nano-active layer; and a light emitting laminate disposed in a different region of the upper surface of the base layer and having a laminated active layer.
Abstract:
A nanostructure semiconductor light-emitting device includes a base layer formed of a first conductivity-type semiconductor, a first material layer disposed on the base layer and including a plurality of openings, a plurality of light-emitting nanostructures, each of which extends through each of the plurality of openings and includes a nanocore formed of a first conductivity-type semiconductor, an active layer and a second conductivity-type semiconductor shell layer, sequentially disposed on the nanocore, a filling layer disposed on the first material layer, wherein the filling layer fills spaces between the plurality of light-emitting nanostructures and a portion of each of the plurality of light-emitting nanostructures is exposed by the filling layer, a second conductivity-type semiconductor extension layer disposed on the filling layer and covering the exposed portion of each of the plurality of light-emitting nanostructures, and a contact electrode layer disposed on the second conductivity-type semiconductor extension layer.
Abstract:
A nanostructure semiconductor light emitting device includes a base layer, an insulating layer, a plurality of light emitting nanostructures, and a contact electrode. The base layer is formed of a first conductivity-type semiconductor material. The insulating layer is disposed on the base layer. Each light emitting nanostructure is disposed in a respective opening of a plurality of openings in the base layer, and includes a nanocore formed of the first conductivity-type semiconductor material, and an active layer and a second conductivity-type semiconductor layer sequentially disposed on a surface of the nanocore. The contact electrode is spaced apart from the insulating layer and is disposed on a portion of the second conductivity-type semiconductor layer. A tip portion of the light emitting nanostructure has crystal planes different from those on side surfaces of the light emitting nanostructure.
Abstract:
A semiconductor light-emitting device includes a light-emitting stack including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, a wavelength conversion layer disposed on the light-emitting stack and configured to convert at least some of light having a first wavelength, emitted from the active layer, into light having a second wavelength, and a light control layer disposed between the light-emitting stack and the wavelength conversion layer, and including a first insulating layer and a second insulating layer, the first insulating layer having a refractive index lower than a refractive index of the light-emitting stack, and the second insulating layer having a refractive index higher than a refractive index of the first insulating layer by 0.5 or more.
Abstract:
There is provided a semiconductor light emitting device including a first conductivity-type semiconductor base layer, a plurality of light emitting nanostructures disposed on the first conductivity-type semiconductor base layer to be spaced apart from one another, each light emitting nanostructure including a first conductivity-type semiconductor core, an active layer and a second conductivity-type semiconductor layer, and a filling layer including a refractive portion disposed between the light emitting nanostructures and a cover portion filled between the light emitting nanostructures and enclosing the refractive portion.
Abstract:
There is provided a light emitting device including a plurality of nanoscale light emitting structures spaced apart from one another on a first conductivity-type semiconductor base layer, the plurality of nanoscale light emitting structures each including a first conductivity-type semiconductor core, an active layer and a second conductivity-type semiconductor layer, and an electrode connected to the second conductivity-type semiconductor layer. The electrode is disposed between a first nanoscale light emitting structure and a second nanoscale light emitting structure among the plurality of nanoscale light emitting structures, and the electrode has a height lower than a height of the plurality of nanoscale light emitting structures.
Abstract:
There is provided a semiconductor light emitting device including: a substrate and a nanostructures spaced apart from one another on the substrate. The nanostructures includes a first conductivity-type semiconductor layer core, an active layer, and a second conductivity-type semiconductor layer. A filler fills spaces between the nanostructures and is formed to be lower than the plurality of nanostructures. An electrode is formed to cover upper portions of the nanostructures and portions of lateral surfaces of the nanostructures and electrically connected to the second conductivity-type semiconductor layer.
Abstract:
There is provided a nanostructure semiconductor light emitting device may including: a base layer formed of a first conductivity-type semiconductor, an insulating layer formed on an upper surface of the base layer and including a first region having a plurality of openings and a plurality of second regions positioned in the plurality of openings and spaced apart from the first region, dielectric nanocores disposed in the plurality of second regions, and a plurality of light emitting nanostructures each including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially disposed on the dielectric nanocores.
Abstract:
A semiconductor light emitting device includes a substrate, a reflective layer and a light emitting structure. The reflective layer includes at least two porous layers alternately disposed on the substrate and having different porosities. The light emitting structure is disposed on the reflective layer and includes a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer.