Abstract:
An object is to provide a semiconductor device including an oxide semiconductor film, which has stable electrical characteristics and high reliability. A stack of first and second material films is formed by forming the first material film (a film having a hexagonal crystal structure) having a thickness of 1 nm to 10 nm over an insulating surface and forming the second material film having a hexagonal crystal structure (a crystalline oxide semiconductor film) using the first material film as a nucleus. As the first material film, a material film having a wurtzite crystal structure (e.g., gallium nitride or aluminum nitride) or a material film having a corundum crystal structure (α-Al2O3, α-Ga2O3, In2O3, Ti2O3, V2O3, Cr2O3, or α-Fe2O3) is used.
Abstract:
An object is to manufacture a semiconductor device including an oxide semiconductor film, which has stable electric characteristics and high reliability. A crystalline oxide semiconductor film is formed, without performing a plurality of steps, as follows: by utilizing a difference in atomic weight of plural kinds of atoms included in an oxide semiconductor target, zinc with low atomic weight is preferentially deposited on an oxide insulating film to form a seed crystal including zinc; and tin, indium, or the like with high atomic weight is deposited on the seed crystal while causing crystal growth. Further, a crystalline oxide semiconductor film is formed by causing crystal growth using a seed crystal with a hexagonal crystal structure including zinc as a nucleus, whereby a single crystal oxide semiconductor film or a substantially single crystal oxide semiconductor film is formed.
Abstract:
To provide a semiconductor device in which the threshold value is controlled. Furthermore, to provide a semiconductor device in which a deterioration in electrical characteristics which becomes more noticeable as a transistor is miniaturized can be suppressed. The semiconductor device includes a first semiconductor film, a source electrode and a drain electrode electrically connected to the first semiconductor film, a gate insulating film, and a gate electrode in contact with the gate insulating film. The gate insulating film includes a first insulating film and a trap film, and charge is trapped in a charge trap state in an interface between the first insulating film and the trap film or inside the trap film.
Abstract:
A method for adjusting threshold of a semiconductor device is provided. In a plurality of semiconductor devices each including a semiconductor, a source or drain electrode electrically in contact with the semiconductor, a gate electrode, and a charge trap layer between a gate electrode and the semiconductor, a state where the potential of the gate electrode is set higher than the potential of the source or drain electrode while the semiconductor devices are heated at 150° C. or higher and 300° C. or lower is kept for one second or longer to trap electrons in the charge trap layer, so that the threshold is increased and Icut is reduced. Here, the potential difference between the gate electrode and the source or drain electrode is set so that it is different between the semiconductor devices, and the thresholds of the semiconductor devices are adjusted to be appropriate to each purpose.
Abstract:
A manufacturing method of a semiconductor device in which the threshold is corrected is provided. In a semiconductor device including a plurality of transistors each includes a semiconductor, a source or drain electrode electrically connected to the semiconductor, a gate electrode, and a charge trap layer between the gate electrode and the semiconductor, electrons are trapped in the charge trap layer by performing heat treatment and, simultaneously, keeping a potential of the gate electrode higher than that of the source or drain electrode for 1 second or more. By this process, the threshold increases and Icut decreases. A circuit for supplying a signal to the gate electrode and a circuit for supplying a signal to the source or drain electrode are electrically separated from each other. The process is performed in the state where the potential of the former circuit is set higher than the potential of the latter circuit.
Abstract:
A method for manufacturing a semiconductor device with adjusted threshold is provided. In a semiconductor device including a semiconductor, a source or drain electrode electrically connected to the semiconductor, a first gate electrode and a second gate electrode between which the semiconductor is provided, a charge trap layer provided between the first gate electrode and the semiconductor, and a gate insulating layer provided between the second gate electrode and the semiconductor, a threshold is increased by trapping electrons in the charge trap layer by keeping a potential of the first gate electrode at a potential higher than a potential of the source or drain electrode for 1 second or more while heating. After the threshold adjustment process, the first gate electrode is removed or insulated from other circuits. Alternatively, a resistor may be provided between the first gate electrode and other circuits.
Abstract:
An oxide semiconductor layer in which “safe” traps exist exhibits two kinds of modes in photoresponse characteristics. By using the oxide semiconductor layer, a transistor in which light deterioration is suppressed to the minimum and the electric characteristics are stable can be achieved. The oxide semiconductor layer exhibiting two kinds of modes in photoresponse characteristics has a photoelectric current value of 1 pA to 10 nA inclusive. When the average time τ1 until which carriers are captured by the “safe” traps is large enough, there are two kinds of modes in photoresponse characteristics, that is, a region where the current value falls rapidly and a region where the current value falls gradually, in the result of a change in photoelectric current over time.