Abstract:
Disclosed are a novel hafnium compound represented by the formula Hf(OSO.sub.2 CF.sub.3).sub.4 and a process using a hafnium compound represented by the formula Hf(OSO.sub.2 CF.sub.3).sub.4 as a catalyst in a Friedel-Crafts reaction.
Abstract:
Disclosed is a technology for enabling an efficient asymmetric Michael addition reaction which does not require a large amount of a malonic ester, while having a short reaction time. Specifically disclosed is a catalyst which is composed of MX2 (wherein M is Be, Mg, Ca, Sr, Ba or Ra and X is an arbitrary group) and a compound represented by general formula [I]. [In the formula, R7, R8, R9 and R10 each represents a substituted cyclic group or an unsubstituted cyclic group.]
Abstract:
Provided is an efficient technology for synthesizing diamino acids (diamino acid derivatives). Disclosed is a manufacturing method for diamino acid derivatives wherein the fluorenyl groups of the diamino acid derivative starting materials represented by General Formula [II] or [IV] are removed.
Abstract:
The present invention discloses 1) a catalyst composition consisting of a crosslinked organic polymer compound and a palladium catalyst, wherein said catalyst is physically carried on said crosslinked organic polymer compound, 2) a manufacturing method of the above catalyst composition 1), characterized by homogenizing a straight chain organic polymer compound, having a crosslinkable functional group, and a palladium catalyst in a solvent dissolving said straight chain organic polymer compound, then depositing a composition thus formed and subjecting the crosslinkable functional group in said deposit to a crosslinking reaction, 3) a method for substitution reaction at an allyl position, characterized by reacting an allyl carbonate and a neucleophilic agent in the presence of the above catalyst composition 1), and 4) a method for oxidizing an alcohol, characterized by subjecting the above catalyst composition 1) to reaction with an alcohol.
Abstract:
A method of the intramolecular and intermolecular cyclization of an N-acylhydrazone for obtaining a pyrazoline skeleton or pyrazolidine skeleton under ordinary conditions with high stereoselectivity and in high yield. An N-acylhydrazone represented by the following formula (I): (wherein R1 and R2 are the same or different and each represents hydrogen or a hydrocarbon group and Ar represents an optionally substituted aromatic hydrocarbon group) is converted to an N-acylpyrazoline derivative with high stereoselectivity in the presence of a Lewis acid catalyst or asymmetric Lewis acid catalyst.
Abstract:
The present invention provides a polysilane-supported transition metal catalysts or a polysilane/inorganic compound-supported transition metal catalysts, wherein various types of transition metals are supported by polysilane compounds, or combination of polysilanes and inorganic compounds. The catalysts of the present invention are hardly soluble in hydrocarbons and alcohols and are useful as catalysts in heterogeneous system for various organic synthetic reactions using the above solvents. Polysilanes supporting transition metals are easily crosslinkable by thermal treatment, microwave irradiation, UV irradiation or chemical methods such as hydrosilylation reaction and are changed to be insoluble in various solvents keeping high catalytic activity. Moreover, the stability and operability of polysilane-supported transition metal catalysts will be improved by the support thereof on inorganic compounds. These polysilane-supported transition metal catalysts show a high catalytic activity in hydrogenation reaction, hydrosilylation reaction, Heck reaction, Suzuki-Miyaura coupling reactions and the like. The catalyst is easily recoverable and reusable and the leakage of metals is extremely few.
Abstract:
A method for aldol reaction in water, which comprises: reacting an aldehyde with a silyl enol ether in an aqueous medium in the presence of a boronic acid represented by the following general formula (1): R1R2BOH (1) (wherein R1 and R2 are the same or different hydrocarbon groups that may contain a substituent), a surfactant, and a Brønsted acid is provided. This method for aldol reaction in water uses a catalytic amount of the boron source to give products in high yield and selectivity.
Abstract:
An asymmetric reaction catalyst is obtained by mixing a pentavalent niobium compound and an optically active triol or tetraol having a binaphthol structure of R or S configuration, and the triol is represented by the following formula: (wherein, Y is divalent hydrocarbon and R1 is a hydrogen atom, a halogen atom, a trifluoromethyl group, or an alkyl group or alkoxy group having at most 4 carbons).
Abstract:
An aldol reaction in an aqueous solution between an aldehyde represented by the following formula (I): R—CHO (I) (wherein R is a hydrocarbon group which may have an substituent), and a silicon enolate represented by the following formula (II): (wherein R1 and R2 are a hydrogen atom or an aliphatic hydrocarbon group, at least one of them being an aliphatic hydrocarbon group; and R3 is a substituent selected from the group consisting of an aliphatic hydrocarbon group, an aromatic hydrocarbon group and a sulfur-containing substituent, wherein R2 and R3 may be combined with each other to form a ring) is performed so as to generate diastereoselectivity by using FeCl3, which is a low-cost Lewis acid, and a surfactant.
Abstract:
The objective is to incarcerate a Lewis acid metal in a polymer and to make this catalyst recoverable while maintaining its function as a Lewis acid metal catalyst. The present invention is a polymer-incarcerated Lewis acid metal catalyst in which a Lewis acid metal is incarcerated in a crosslinked polymer and the crosslinked polymer is crosslinked using the crosslinking groups contained in a crosslinkable polymer. The polymer incarcerated Lewis acid metal catalyst is characterized by the crosslinkable polymer containing at least one type of monomer unit containing hydrophobic substituents and hydrophilic substituents containing crosslinking groups, and the hydrophobic substituents contain aromatic substituents. This crosslinkable polymer preferably comprises at least one type of monomer unit containing hydrophobic substituents and hydrophilic substituents containing crosslinking groups and a monomer unit containing hydrophobic substituents. This catalyst can be obtained by subjecting a polymer micelle incarcerated Lewis acid metal obtained by mixing an organic solution containing a crosslinkable polymer and a Lewis acid metal with a bad solvent to a crosslinking reaction. This catalyst is useful as a catalyst in aldol reactions, cyanolation reactions, allylation reactions, Michael reactions, Mannich reactions, Diels Alder reactions and Friedel Crafts reactions.