Abstract:
A semiconductor device includes: a sidewall insulating film; a gate electrode; source and drain regions; a first stress film; and a second stress film.
Abstract:
The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.
Abstract:
A solid-state imaging device includes a plurality of photoelectric conversion portions each provided to correspond to each of a plurality of pixels in a semiconductor substrate and receiving incident light through a light sensing surface, and a pixel separation portion that is embedded into a trench provided on a side portion of the photoelectric conversion portion and electrically separates the plurality of pixels in a side of an incident surface of the semiconductor substrate into which the incident light enters. The pixel separation portion is formed by an insulation material which absorbs the incident light entering the light sensing surface.
Abstract:
An image pickup device includes: a photodiode provided in a silicon substrate, and configured to generate electric charge corresponding to an amount of received light, by performing photoelectric conversion; and a transfer transistor provided at an epitaxial layer on the silicon substrate, and configured to transfer the electric charge generated in the photodiode, wherein the transfer transistor includes a gate electrode and a channel region, the gate electrode being embedded in the epitaxial layer, and the channel region surrounding the gate electrode, and the channel region has, in a thickness direction, a concentration gradient in which a curvature of a potential gradient is free from a mixture of plus and minus signs.
Abstract:
Disclosed herein is a semiconductor device including an element isolation region configured to be formed on a semiconductor substrate, wherein the element isolation region is formed of a multistep trench in which trenches having different diameters are stacked and diameter of an opening part of the lower trench is smaller than diameter of a bottom of the upper trench.
Abstract:
There is provided a solid-state imaging device including a semiconductor base element, an organic photoelectric conversion layer formed above the semiconductor base element, a contact hole formed in an insulating layer on the semiconductor base element, a conductive layer formed in the contact hole and electrically connecting a photoelectric conversion part which includes the organic photoelectric conversion layer with the semiconductor base element, and a contact portion which is formed by self-alignment with the conductive layer in the contact hole in the semiconductor base element, and connected to the conductive layer.
Abstract:
The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.
Abstract:
The present technology relates to a solid-state image sensing device and an electronic device capable of reducing noises. The solid-state image sensing device includes a photoelectric conversion unit, a charge holding unit for holding charges transferred from the photoelectric conversion unit, a first transfer transistor for transferring charges from the photoelectric conversion unit to the charge holding unit, and a light blocking part including a first light blocking part and a second light blocking part. The first light blocking part is arranged between a second surface opposite to a first surface as a light receiving surface of the photoelectric conversion unit and the charge holding unit, and covers the second surface, and is formed with a first opening, and the second light blocking part surrounds the side surface of the photoelectric conversion unit. The present technology is applicable to solid-state image sensing devices of backside irradiation type.
Abstract:
A solid-state imaging device includes a sensor including an impurity diffusion layer provided in a surface layer of a semiconductor substrate; and an oxide insulating film containing carbon, the oxide insulating film being provided on the sensor.
Abstract:
A solid-state imaging device includes a plurality of photoelectric conversion portions each provided to correspond to each of a plurality of pixels in a semiconductor substrate and receiving incident light through a light sensing surface, and a pixel separation portion that is embedded into a trench provided on a side portion of the photoelectric conversion portion and electrically separates the plurality of pixels in a side of an incident surface of the semiconductor substrate into which the incident light enters. The pixel separation portion is formed by an insulation material which absorbs the incident light entering the light sensing surface.