Abstract:
The present invention relates to an evaporation source for evaporating an organic electroluminescent layer. In particular, the present invention relates to the evaporation source preventing an aperture, through which a vaporized evaporation material is emitted, from being clogged by restricting heat transfer to outward. The evaporation source according to the present invention includes a cell retaining an evaporation material therein; a cell cap installed on the upper part of the cell and having a cell cap aperture for emitting a vaporized evaporation material; an external wall placed in the outside of the cell to support a heating means set up at the outside of the cell; a cover placed above the cell cap, fixed to the upper end of the external wall, and having a cover aperture corresponding to the cell cap aperture; and a shut-off plate placed between the cover and the cell cap and having a shut-off plate aperture corresponding to the cell cap aperture and the cover aperture in the center of the shut-off plate.
Abstract:
A cooler structure of stirling engine is designed to make it easier for the production of the cooler by using brazing soldering techniques, and which in turn reduces the loss of the heat being transmitted to the cooling water and the displacer seal. The invention includes a sealing filler metal having the same depth formed around the circumference of each surface of the upper and lower plates which seals the radiator tubes to be fixed and sustained by the upper and lower plates. An adiabatic part is formed between the upper plate having a projection maintaining a predetermined length toward the inner low part. The internal cylinder prevents the passing of the heat from the internal cylinder to the radiator tube.
Abstract:
The present invention provides an inductive angle sensor with improved common mode noise rejection and a signal processing method of the same, which can improve electromagnetic compatibility (EMC) characteristics and obtain an accurate output value by eliminating common mode noise. The signal processing method includes adding signals obtained from a pair of receiver coils by an adder, subtracting the signal obtained from one of the pair of receiver coils from the signal obtained from the other receiver coil by a subtracter, multiplying the value obtained from the adder by the value obtained from the subtracter by a first multiplier, multiplying the value obtained from the subtracter by itself by a second multiplier, and dividing the value obtained from the first multiplier by the value obtained from the second multiplier by a divider.
Abstract:
A plasma display apparatus comprising a connector is provided. The plasma display apparatus comprises a plasma display panel comprising an electrode of a predetermined width and a connector comprising an electrode line of a width narrower than the predetermined width of the electrode to supply a driving signal to the electrode. A distance between the electrode line and an adjacent electrode line is longer than a distance between the electrode and an adjacent electrode.
Abstract:
In a method of forming a thin film and methods of manufacturing a gate structure and a capacitor, a hafnium precursor including one alkoxy group and three amino groups, and an oxidizing agent are provided on a substrate. The hafnium precursor is reacted with the oxidizing agent to form the thin film including hafnium oxide on the substrate. The hafnium precursor may be employed for forming a gate insulation layer of a transistor or a dielectric layer of a capacitor.
Abstract:
TiN layer structures for semiconductor devices, methods of forming TiN layer structures, semiconductor devices having TiN layer structures and methods of fabricating semiconductor devices are disclosed. The TiN layer structure for a semiconductor device includes a TiN base layer and a conductive capping layer. The TiN base layer is formed on a substrate. The conductive capping layer is formed on the TiN base layer by laminating unit layers repeatedly.
Abstract:
An optical fiber amplifier capable of compensating dispersion and loss of an optical signal in transmission along an optical fiber includes an optical fiber doped with erbium ions and having a dispersion compensating function. The amplifier further includes an erbium pump for performing forward pumping to the optical fiber, and a Raman pump for performing backward pumping to the optical fiber which is forward-pumped by the erbium pump means. When an optical signal passes through the optical fiber which undergoes density inversion of erbium ions and Stimulated Raman Scattering (SRS), dispersion and loss of the optical signal is compensated.
Abstract:
In a method of forming a layer using an atomic layer deposition process, after a substrate is loaded into a chamber, a first reactant is provided onto the substrate. The first reactant is partially chemisorbed on the substrate. A second reactant is introduced into the chamber to form a preliminary layer on the substrate by chemically reacting the second reactant with the chemisorbed first reactant. Impurities in the preliminary layer and unreacted reactants are simultaneously removed using a plasma for removing impurities to thereby form the layer on the substrate. The impurities in the layer may be effectively removed so that the layer may have reduced leakage current.
Abstract:
A semiconductor device and a method for forming the same. A dielectric layer is formed on a semiconductor substrate or on a lower electrode of a capacitor. Vacuum annealing is performed on the dielectric layer. Thus, impurities remaining in the dielectric layer can be effectively removed, and the dielectric layer can be densified. As a result, the electrical characteristics of the semiconductor device are improved. For example, the leakage current characteristics of the dielectric layer are improved and capacitance is increased.
Abstract:
Methods for forming a capacitor using an atomic layer deposition process include providing a reactant including an aluminum precursor onto a substrate to chemisorb a portion of the reactant to a surface of the substrate. The substrate has an underlying structure including a lower electrode. An ammonia (NH3) plasma is provided onto the substrate to form a dielectric layer including aluminum nitride on the substrate including the lower electrode. An upper electrode is formed on the dielectric layer. A second dielectric layer may be provided oil the first dielectric layer