Abstract:
A test override circuit includes a memory that includes multiple memory instances. A path selector receives a control signal from automatic test pattern generator equipment (ATE) to control data access to data paths that are operatively coupled between the memory instances and a plurality of logic endpoints. The path selector generates an output signal that indicates which of the data paths is selected in response to the control signal. A gating circuit enables the selected data paths to be accessed by at least one of the plurality of logic endpoints in response to the output signal from the path selector.
Abstract:
A built-in self-test (BIST) parallel memory test architecture for an integrated circuit, such as a system-on-a-chip (SoC), is disclosed. A BIST controller generates a test data pattern for memories of a common memory type, with this test data pattern forwarded to the memories, with pipeline delay stages inserted in the data path according to the operational speed of the memory in its normal operation. The expected data response of these memories, when read, and corresponding to this test data pattern is delayed for a group of memories by a local delay response generator shared by those memories. For example, the memories in the group of memories may be physically near one another. The local delay response generator delays the expected data response by a delay corresponding to the memory latency of those memories in the group, before applying the expected data response to local comparators associated with the memories in the group.
Abstract:
Electronic scan circuitry includes a decompressor (510), a plurality of scan chains (520.i) fed by the decompressor (510), a scan circuit (502, 504) coupled to the plurality of scan chains (520.i) to scan them in and out, a masking circuit (590) fed by the scan chains (520.i), and a scannable masking qualification circuit (550, 560, 580) coupled to the masking circuit (590), the masking qualification circuit (550, 560, 580) scannable by scan-in of bits by the decompressor (510) along with scan-in of the scan chains (520.i), and the scannable masking qualification circuit (550, 560, 580) operable to hold such scanned-in bits upon scan-out of the scan chains through the masking circuit (590). Other scan circuitry, processes, circuits, devices and systems are also disclosed.
Abstract:
A circuit includes a dynamic core data register (DCDR) cell that includes a data register, a shift register and an output circuit to route the output state of the data register or the shift register to an output of the DCDR in response to an output control input. A clock gate having a gate control input controls clocking of the shift register in response to a first scan enable signal. An output control gate controls the output control input of the output circuit and controls which outputs from the data register or the shift register are transferred to the output of the output circuit in response to a second scan enable signal. The first scan enable signal and the second scan enable signal to enable a state transition of the shift register at the output of the DCDR.
Abstract:
A method that includes disabling circuit paths in a circuit under test during transition fault testing (TFT) of valid timing paths of the circuit under test. The method then tests the circuit paths at slower clock speeds than the clock speed of the valid timing paths during TFT of the circuit paths. Finally, the method tests the circuit paths and the valid timing paths to facilitate testing of the circuit under test.
Abstract:
A system includes a volatile storage device, a read-only memory (ROM), a memory built-in self-test (BIST) controller and a central processing unit (CPU). The CPU, upon occurrence of a reset event, executes a first instruction from the ROM to cause the CPU to copy a plurality of instructions from a range of addresses in the ROM to the volatile storage device. The CPU also executes a second instruction from the ROM to change a program counter. The CPU further executes the plurality of instructions from the volatile storage device using the program counter. The CPU, when executing the plurality of instructions from the volatile storage device, causes the ROM to enter a test mode and the memory BIST controller to be configured to test the ROM.
Abstract:
A circuit includes a dynamic core data register (DCDR) cell that includes a data register, a shift register and an output circuit to route the output state of the data register or the shift register to an output of the DCDR in response to an output control input. A clock gate having a gate control input controls clocking of the shift register in response to a first scan enable signal. An output control gate controls the output control input of the output circuit and controls which outputs from the data register or the shift register are transferred to the output of the output circuit in response to a second scan enable signal. The first scan enable signal and the second scan enable signal to enable a state transition of the shift register at the output of the DCDR.
Abstract:
Electronic scan circuitry includes a decompressor (510), a plurality of scan chains (520.i) fed by the decompressor (510), a scan circuit (502, 504) coupled to the plurality of scan chains (520.i) to scan them in and out, a masking circuit (590) fed by the scan chains (520.i), and a scannable masking qualification circuit (550, 560, 580) coupled to the masking circuit (590), the masking qualification circuit (550, 560, 580) scannable by scan-in of bits by the decompressor (510) along with scan-in of the scan chains (520.i), and the scannable masking qualification circuit (550, 560, 580) operable to hold such scanned-in bits upon scan-out of the scan chains through the masking circuit (590). Other scan circuitry, processes, circuits, devices and systems are also disclosed.
Abstract:
A built-in self-test (BIST) parallel memory test architecture for an integrated circuit, such as a system-on-a-chip (SoC), is disclosed. A BIST controller generates a test data pattern for memories of a common memory type, with this test data pattern forwarded to the memories, with pipeline delay stages inserted in the data path according to the operational speed of the memory in its normal operation. The expected data response of these memories, when read, and corresponding to this test data pattern is delayed for a group of memories by a local delay response generator shared by those memories. For example, the memories in the group of memories may be physically near one another. The local delay response generator delays the expected data response by a delay corresponding to the memory latency of those memories in the group, before applying the expected data response to local comparators associated with the memories in the group.
Abstract:
A built-in self-test (BIST) parallel memory test architecture for an integrated circuit, such as a system-on-a-chip (SoC), is disclosed. A BIST controller generates a test data pattern for memories of a common memory type, with this test data pattern forwarded to the memories, with pipeline delay stages inserted in the data path according to the operational speed of the memory in its normal operation. The expected data response of these memories, when read, and corresponding to this test data pattern is delayed for a group of memories by a local delay response generator shared by those memories. For example, the memories in the group of memories may be physically near one another. The local delay response generator delays the expected data response by a delay corresponding to the memory latency of those memories in the group, before applying the expected data response to local comparators associated with the memories in the group.