Abstract:
A method of forming a coating film over a substrate is provided. The method includes spinning the substrate. The method further includes providing a central coating liquid spray over a central portion of the substrate. The method also includes providing first coating liquid sprays over the substrate. The first coating liquid sprays surround the central coating liquid spray and are spaced apart from the central coating liquid spray by a same first distance.
Abstract:
Some embodiments relate to an integrated circuit (IC). The IC includes a semiconductor substrate having an upper surface with a source region and drain region proximate thereto. A channel region is disposed in the substrate between the source region and the drain region. A gate electrode is disposed over the channel region and separated from the channel region by a gate dielectric. Sidewall spacers are formed about opposing sidewalls of the gate electrode. Upper outer edges of the sidewall spacers extend outward beyond corresponding lower outer edges of the sidewall spacers. A liner is disposed about opposing sidewalls of the sidewall spacers and has a first thickness at an upper portion of liner and a second thickness at a lower portion of the liner. The first thickness is less than the second thickness. Other embodiments are also disclosed.
Abstract:
A multi chamber thin film deposition apparatus and a method for depositing films, is provided. Each chamber includes a three dimensional gas delivery system including process gases being delivered downwardly toward the substrate and laterally toward the substrate. A pumping system includes an exhaust port in each chamber that is centrally positioned underneath the substrate being processed and therefore the gas flow around all portions of the edge of the substrate are equally spaced from the exhaust port thereby creating a uniform gas flow profile which results in film thickness uniformity of films deposited on both the front and back surfaces of the substrate. The deposited films demonstrate uniform thickness on the front and back of the substrate and extend inwardly to a uniform distance on the periphery of the backside of the substrate.
Abstract:
A method for improving reliability of interconnect structures for semiconductor devices is disclosed. The method includes forming a contact structure on a transistor and forming a metallization layer on the contact structure. The forming the metallization layer includes depositing an inter-metal dielectric (IMD) layer on the transistor, forming an opening within the IMD layer to expose a top surface of the contact structure, depositing a metallic layer to fill the opening, forming an electron barrier layer within the IMD layer, and forming a capping layer within the metallic layer. The electron barrier layer has a hole carrier concentration higher than a hole carrier concentration of a portion of the IMD layer underlying the electron barrier layer. The capping layer has a hole carrier concentration higher than a hole carrier concentration of a portion of the metallic layer underlying the capping layer.
Abstract:
The present disclosure describes a semiconductor device manufacturing apparatus and a method for handling contamination in the semiconductor device manufacturing apparatus. The semiconductor device manufacturing apparatus can include a deposition apparatus and a processor. The deposition apparatus can include a chamber, a detection module configured to detect impurities in the chamber, and a gas scrubbing device configured to remove the impurities. The processor can be configured to receive, from the detection module, an impurity characteristic associated with the impurities; compare the impurity characteristic to a baseline characteristic; and instruct the gas scrubbing device to supply a decontamination gas in the chamber based on the comparison of the impurity characteristic to the baseline characteristic.
Abstract:
A method for improving reliability of interconnect structures for semiconductor devices is disclosed. The method includes forming a contact structure on a transistor and forming a metallization layer on the contact structure. The forming the metallization layer includes depositing an inter-metal dielectric (IMD) layer on the transistor, forming an opening within the IMD layer to expose a top surface of the contact structure, depositing a metallic layer to fill the opening, forming an electron barrier layer within the IMD layer, and forming a capping layer within the metallic layer. The electron barrier layer has a hole carrier concentration higher than a hole carrier concentration of a portion of the IMD layer underlying the electron barrier layer. The capping layer has a hole carrier concentration higher than a hole carrier concentration of a portion of the metallic layer underlying the capping layer.
Abstract:
An Equipment Front End Module (EFEM) having a Front Opening Unified Pod (FOUP) dock and a tool access port, includes a robotic wafer handling system configured to transfer silicon wafers between a FOUP coupled to the FOUP dock and a process tool positioned for access via the tool access port. An air curtain system inside the EFEM is positioned to produce an air curtain across the tool access port while the port is open, acting to isolate the interior of the EFEM from the tool environment, and prevent passage of airborne contaminants into the EFEM via the access port.
Abstract:
The present disclosure relates to an integrated chip having gate electrodes separated from an epitaxial source/drain region by gaps filled with a flowable dielectric material. In some embodiments, the integrated chip has an epitaxial source/drain region protruding outward from a substrate. A first gate structure, having a conductive gate electrode, is separated from the epitaxial source/drain region by a gap. A flowable dielectric material is disposed within the gap, and a pre-metal dielectric (PMD) layer is arranged above the flowable dielectric material. The PMD layer continuously extends between a sidewall of the first gate structure and a sidewall of a second gate structure, and has an upper surface that is substantially aligned with an upper surface of the conductive gate electrode. A metal contact is electrically coupled to the conductive gate electrode and is disposed within an inter-level dielectric layer over the PMD layer and the first gate structure.
Abstract:
The present disclosure relates to an integrated chip IC having transistors with structures separated by a flowable dielectric material, and a related method of formation. In some embodiments, an integrated chip has a semiconductor substrate and an embedded silicon germanium (SiGe) region extending as a positive relief from a location within the semiconductor substrate to a position above the semiconductor substrate. A first gate structure is located at a position that is separated from the embedded SiGe region by a first gap. A flowable dielectric material is disposed between the gate structure and the embedded SiGe region and a pre-metal dielectric (PMD) layer disposed above the flowable dielectric material. The flowable dielectric material provides for good gap fill capabilities that mitigate void formation during gap fill between the adjacent gate structures.
Abstract:
A multi chamber thin film deposition apparatus and a method for depositing films, is provided. Each chamber includes a three dimensional gas delivery system including process gases being delivered downwardly toward the substrate and laterally toward the substrate. A pumping system includes an exhaust port in each chamber that is centrally positioned underneath the substrate being processed and therefore the gas flow around all portions of the edge of the substrate are equally spaced from the exhaust port thereby creating a uniform gas flow profile which results in film thickness uniformity of films deposited on both the front and back surfaces of the substrate. The deposited films demonstrate uniform thickness on the front and back of the substrate and extend inwardly to a uniform distance on the periphery of the backside of the substrate.