Abstract:
A semiconductor package structure and a method for forming the same are disclosed. The semiconductor package structure includes a semiconductor die, a molding layer and an inductor. The semiconductor die includes an active surface, a back surface and a sidewall surface between the active surface and the back surface. The molding layer covers the back surface and the sidewall surface of the semiconductor die. The inductor is in the molding layer. The sidewall surface of the semiconductor die faces toward the inductor.
Abstract:
The present invention provides a method of forming a chip with TSV electrode. A substrate with a first surface and a second surface is provided. A thinning process is performed from a side of the second surface so the second surface becomes a third surface. Next, a penetration via which penetrates through the first surface and the third surface is formed in the substrate. A patterned material layer is formed on the substrate, wherein the patterned material layer has an opening exposes the penetration via. A conductive layer is formed on the third surface thereby simultaneously forming a TSV electrode in the penetration via and a surface conductive layer in the opening.
Abstract:
The present invention provides a method of forming a chip with TSV electrode. A substrate with a first surface and a second surface is provided. A thinning process is performed from a side of the second surface so the second surface becomes a third surface. Next, a penetration via which penetrates through the first surface and the third surface is formed in the substrate. A patterned material layer is formed on the substrate, wherein the patterned material layer has an opening exposes the penetration via. A conductive layer is formed on the third surface thereby simultaneously forming a TSV electrode in the penetration via and a surface conductive layer in the opening.
Abstract:
A method for fabricating a semiconductor device includes the steps of first defining a scribe line on a front side of a wafer, in which the wafer includes an inter-metal dielectric (IMD) layer disposed on a substrate and an alternating stack disposed on the IMD layer. Next, part of the alternating stack is removed to form a trench on the front side of the wafer, a dielectric layer is formed in the trench, and then a dicing process is performed along the scribe line from a back side of the wafer to divide the wafer into chips.
Abstract:
A capacitor structure comprises a substrate having a first side and a second side opposite to the first side; a plurality of first trenches formed on the first side of the substrate; a plurality of second trenches formed on the second side of the substrate; a first capacitor extending along the first side and into the first trenches; and a second capacitor extending along the second side and into the second trenches.
Abstract:
A semiconductor package structure and a method for forming the same are disclosed. The semiconductor package structure includes a semiconductor die, a molding layer and an inductor. The semiconductor die includes an active surface, a back surface and a sidewall surface between the active surface and the back surface. The molding layer covers the back surface and the sidewall surface of the semiconductor die. The inductor is in the molding layer. The sidewall surface of the semiconductor die faces toward the inductor.
Abstract:
A semiconductor structure includes a substrate having a frontside surface and a backside surface. A through-substrate via extends into the substrate from the frontside surface. The through-substrate via comprises a top surface. A metal cap covers the top surface of the through-substrate via. A plurality of cylindrical dielectric plugs is embedded in the metal cap. The cylindrical dielectric plugs are distributed only within a central area of the metal cap. The central area is not greater than a surface area of the top surface of the through-substrate via.
Abstract:
A fan-out wafer level package is provided. The fan-out wafer level package includes a semiconductor element, a molding compound, a first fan-out structure, a conductive heat spreader, and a plurality of solder balls. The semiconductor element includes a plurality of bonding pads. The molding compound covers the semiconductor element. The first fan-out structure is formed on the semiconductor element, wherein the first fan-out structure has a plurality of fan-out contacts electrically connected to the bonding pads. The conductive heat spreader is formed on the first fan-out structure, wherein the conductive heat spreader has a plurality of through holes filled with a conductive material. The solder balls are formed on the conductive heat spreader, wherein the solder balls are electrically connected to the first fan-out structure via the through holes filled with the conductive material.
Abstract:
A fan-out wafer level package is provided. The fan-out wafer level package includes a semiconductor element, a molding compound, a first fan-out structure, a conductive heat spreader, and a plurality of solder balls. The semiconductor element includes a plurality of bonding pads. The molding compound covers the semiconductor element. The first fan-out structure is formed on the semiconductor element, wherein the first fan-out structure has a plurality of fan-out contacts electrically connected to the bonding pads. The conductive heat spreader is formed on the first fan-out structure, wherein the conductive heat spreader has a plurality of through holes filled with a conductive material. The solder balls are formed on the conductive heat spreader, wherein the solder balls are electrically connected to the first fan-out structure via the through holes filled with the conductive material.
Abstract:
The present invention provides a method of forming a chip with TSV electrode. A substrate with a first surface and a second surface is provided. A thinning process is performed from a side of the second surface so the second surface becomes a third surface. Next, a penetration via which penetrates through the first surface and the third surface is formed in the substrate. A patterned material layer is formed on the substrate, wherein the patterned material layer has an opening exposes the penetration via. A conductive layer is formed on the third surface thereby simultaneously forming a TSV electrode in the penetration via and a surface conductive layer in the opening.