Abstract:
A measurement method of an overlay mark is provided. An overlay mark on a wafer is measured with a plurality of different wavelength regions of an optical measurement tool, so as to obtain a plurality of overlay values corresponding to the wavelength regions. The overlay mark on the wafer is measured with an electrical measurement tool to obtain a reference overlay value. The wavelength region that corresponds to the overlay value closest to the reference overlay value is determined as a correct wavelength region for the overlay mark.
Abstract:
The embodiments of the disclosure provide a patterning method, which includes the following processes. A target layer is formed on a substrate. A hard mask layer is formed over the target layer. A first patterning process is performed on the hard mask layer by using a photomask having a first pattern with a first pitch. The photomask is shifted along a first direction by a first distance. A second patterning process is performed on the hard mask layer by using the photomask that has been shifted, so as to form a patterned hard mask. The target layer is patterned using the patterned hard mask to form a patterned target layer. The target layer has a second pattern with a second pitch less than the first pitch.
Abstract:
The present invention provides an overlay target. The overlay target includes a plurality of first pattern blocks and a plurality of second pattern blocks. The first pattern blocks and the second patterns blocks are arranged in array by being separated by at least one first gaps stretching along a first direction and at least one second gaps stretching along a second direction. Each first pattern block is composed of a plurality of first stripe patterns stretching along a third direction, and each second pattern block is composed of a plurality of second stripe patterns stretching along a fourth direction. The first direction is orthogonal to the second direction, the third direction and the fourth direction are 45 degrees relative to the first direction.
Abstract:
The present invention provides a photo-mask for manufacturing structures on a semiconductor substrate, which comprises a photo-mask substrate, a first pattern, a second pattern and a forbidden pattern. A first active region, a second active region are defined on the photo-mask substrate, and a region other than the first active region and the second active region are defined as a forbidden region. The first pattern is disposed in the first active region and corresponds to a first structure on the semiconductor substrate. The second pattern is disposed in the second active region and corresponds to a second structure on the semiconductor substrate. The forbidden pattern is disposed in the forbidden region, wherein the forbidden pattern has a dimension beyond resolution capability of photolithography and is not used to form any corresponding structure on the semiconductor substrate. The present invention further provides a method of manufacturing semiconductor structures.
Abstract:
A method of forming a photoresist pattern, in which, a substrate is coated with a photoresist layer, an exposure process is performed on the photoresist layer to expose the photoresist layer, the photoresist layer is rinsed with a surfactant after the exposure process is performed, and the photoresist layer is post-exposure baked after the photoresist layer is rinsed with the surfactant.
Abstract:
A method of removing a step height on a gate structure includes providing a substrate. A gate structure is disposed on the substrate. A dielectric layer covers the gate structure and the substrate. Then, a composite material layer is formed to cover the dielectric layer. Later, part of the composite material layer is removed to form a step height disposed directly on the gate structure. Subsequently, a wet etching is performed to remove the step height. After the step height is removed, the dielectric layer is etched to form a first contact hole to expose the gate structure.
Abstract:
The present invention provides a photo-mask for manufacturing structures on a semiconductor substrate, which comprises a photo-mask substrate, a first pattern, a second pattern and a forbidden pattern. A first active region, a second active region are defined on the photo-mask substrate, and a region other than the first active region and the second active region are defined as a forbidden region. The first pattern is disposed in the first active region and corresponds to a first structure on the semiconductor substrate. The second pattern is disposed in the second active region and corresponds to a second structure on the semiconductor substrate. The forbidden pattern is disposed in the forbidden region, wherein the forbidden pattern has a dimension beyond resolution capability of photolithography and is not used to form any corresponding structure on the semiconductor substrate. The present invention further provides a method of manufacturing semiconductor structures.
Abstract:
A method of correcting an overlay error includes the following steps. First, an overlay mark disposed on a substrate is captured so as to generate overlay mark information. The overlay mark includes at least a pair of first mark patterns and at least a second mark pattern above the first mark patterns. Then, the overlay mark information is calculated to generate an offset value between two first mark patterns and to generate a shift value between the second mark pattern and one of the first mark patterns. Finally, the offset value is used to compensate the shift value so as to generate an amended shift value.
Abstract:
A patterning method is provided. First, a material layer is formed over a substrate. Thereafter, a plurality of directed self-assembly (DSA) patterns are formed on the material layer. Afterwards, a patterned photoresist layer is formed by using a single lithography process. The patterned photoresist layer covers a first portion of the DSA patterns and exposes a second portion of the DSA patterns. Further, the material layer is patterned by an etching process, using the patterned photoresist layer and the second portion of the DSA patterns as a mask.
Abstract:
An overlay mark structure includes a plurality of first patterns of a previous layer and a plurality of second patterns of a current layer. Each of the second patterns includes a first section and a second section. The first section is disposed corresponding to one of the first patterns in a vertical direction. The first section partially overlaps the first pattern corresponding to the first section in the vertical direction. The second section is separated from the first section in an elongation direction of the second pattern. A part of the first pattern corresponding to the first section is disposed between the first section and the second section in the elongation direction of the second pattern. A measurement method of the overlay mark structure includes performing a diffraction-based overlay measurement between each of the first sections and the first pattern overlapping the first section.