摘要:
A process for preparing an electrically conductive adhesive (ECA) with low and stable contact resistance by mixing at least one melt-processable reactive resin, at least one reactive diluent, at least one rheological additive, at least one curing agent, at least one organic acid catalyst, and copper particles. The ECA is useful for filling vias, and bonding together components of electronic circuit structures.
摘要:
Disclosed are thermally conductive plates. Each plate is configured such that a uniform adhesive-filled gap may be achieved between the plate and a heat generating structure when the plate is bonded to the heat generating structure and subjected to a temperature within a predetermined temperature range that causes the heat generating structure to warp. Additionally, this disclosure presents the associated methods of forming the plates and of bonding the plates to a heat generating structure. In one embodiment the plate is curved and modeled to match the curved surface of a heat generating structure within the predetermined temperature range. In another embodiment the plate is a multi-layer conductive structure that is configured to undergo the same warpage under a thermal load as the heat generating structure. Thus, when the plate is bonded with the heat generating structure it is able to achieve and maintain a uniform adhesive-filled gap at any temperature.
摘要:
A cooling system for an electronic component on a component carrier is provided. The system includes a frame, a spray manifold, and a sealing member. The frame has an opening and is connectable to the component carrier so that an annular area is defined between the opening and the electronic component. The spray manifold is sealed over the opening to define a spray area over a back surface of the electronic component. The spray manifold sprays a cooling fluid on the back surface. The sealing member seals the annular region so that input/output connectors on the component carrier are isolated from the cooling fluid.
摘要:
Electronically grounded heat spreaders are employed in connection with the dissipation of heat, which is generated by electronic devices, such as semiconductor chips. Also provided is a novel method for the adhesive fastening of metallic heat spreaders to semiconductor chips through the combined use of electrically conductive and non-conductive adhesive materials.
摘要:
A method for detecting soft errors in an integrated circuit (IC) due to transient-particle emission, the IC comprising at least one chip and a substrate includes mixing an epoxy with a radioactive source to form a hot underfill (HUF); underfilling the chip with the HUF; sealing the underfilled chip; measuring a radioactivity of the HUF at an edge of the chip; measuring the radioactivity of the HUF on a test coupon; testing the IC for soft errors by determining a current radioactivity of the HUF at the time of testing based on the measured radioactivity; and after the expiration of a radioactive decay period of the radioactive source, using the IC in a computing device by a user.
摘要:
Composite interconnect structure forming methods using injection molded solder are disclosed. The methods provide a mold having at least one opening formed therein with each opening including a member of a material dissimilar to a solder to be used to fill the opening, and then fill the remainder of each opening with solder to form the composite interconnect structure. The resulting composite interconnect structure can be leveraged to achieve a much larger variety of composite structures than exhibited by the prior art. For example, the material may be chosen to be more electrically conductive than the solder portion, more electromigration-resistant than the solder portion and/or more fatigue-resistant than the solder portion. In one embodiment, the composite interconnect structure can include an optical structure, or plastic or ceramic material. The optical structure provides radiation propagation and/or amplification between waveguides in the substrate and device, and the plastic material provides fatigue-resistance.
摘要:
An electrically conductive adhesive (ECA) with low and stable contact resistance includes at least one melt-processable reactive resin, at least one reactive diluent, at least one rheological additive, copper particles, at least one curing agent and at least one organic acid catalyst. The ECA is useful for filling vias, and bonding together components of electronic circuit structures. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader quickly to ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the appended issued claims. 37 CFR §1.72(b).
摘要:
A method and resulting electronic package in which a heat sink is secured to the package's dielectric material (e.g., overmold). The surface of the dielectric is roughened (e.g., using an abrasive paper or pad) to enhance the subsequent dielectric-heat sink bond in which an adhesive is used. The dielectric material's roughened external surface(s), typically containing silicone material (e.g., silicone residue) which is an inherent by-product of many dielectric materials of the type used in such packaging, is (are) able to still be securely attached to the heat sink, despite the presence of said silicone. In another embodiment, the roughened surface enhances the marking of dielectric material of this type (e.g., using ink).
摘要:
An electronic device including electronic circuit structures formed with an electrically conductive adhesive (ECA) with low and stable contact resistance including at least one melt-processable reactive resin, at least one reactive diluent, at least one rheological additive, at least one curing agent, at least one organic acid catalyst, and copper particles. The ECA is useful for filling vias, and bonding together components of electronic circuit structures.
摘要:
A method for detecting soft errors in an integrated circuit (IC) due to transient-particle emission, the IC comprising at least one chip and a substrate includes mixing an epoxy with a radioactive source to form a hot underfill (HUF); underfilling the chip with the HUF; sealing the underfilled chip; measuring a radioactivity of the HUF at an edge of the chip; measuring the radioactivity of the HUF on a test coupon; testing the IC for soft errors by determining a current radioactivity of the HUF at the time of testing based on the measured radioactivity; and after the expiration of a radioactive decay period of the radioactive source, using the IC in a computing device by a user.