Abstract:
Provided are a dual mode semiconductor laser and a terahertz wave apparatus using the same. The dual mode semiconductor laser includes a distributed feedback laser structure section including a first diffraction grating on a substrate and a distributed Bragg reflector laser structure section including a second diffraction grating on the substrate. A first wavelength oscillated by the distributed feedback laser structure section and a second wavelength oscillated by the distributed Bragg reflector laser structure section are different from each other, and the distributed feedback laser structure section and the distributed Bragg reflector laser structure section share the same gain medium with each other.
Abstract:
Provided is a multi-wavelength optical source generator. The multi-wavelength optical source generator includes: a gain part generating a plurality of lights through a plurality of gain waveguides; a reflective part transmitting or reflecting lights provided from each of the plurality of gain waveguides according to a wavelength; and a multiplexing part multiplexing a plurality of lights transmitted and outputted through the reflective part.
Abstract:
Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
Abstract:
Provided is a laser device. In the laser device, an active layer is connected to a stem core of a 1×2 splitter on a substrate, a first diffraction grating is coupled to a first twig core of the 1×2 splitter, and a second diffraction grating is coupled to a second twig core of the 1×2 splitter. An active layer-micro heater is designed to supply heat to the active layer. First and second micro heaters are designed to supply heats to the first and second diffraction gratings, respectively, thereby varying a Bragg wavelength.
Abstract:
Provided is a fiber laser generating Terahertz wave. The fiber laser comprises: a light source generating a laser beam as a pump light; first and second resonators first and second resonators first and second resonators resonating the laser beam into first and second wavelengths; and a coupler separating and supplying the laser beam generated in the light source to the first and second resonators and again feeding back the laser beam having the first and second wavelengths resonated respectively in the first and second resonators to the light source.
Abstract:
Provided are an apparatus for and a method of generating millimeter waves, in which millimeter-wave generation and frequency up-conversion can be achieved at the same time using a single device. The apparatus includes a mode-locking laser diode (LD) which has a distributed feedback (DFB) sector and a gain sector and generates high-frequency optical pulses through a passive mode locking process, a modulator which modulates an external optical signal using an electric signal and injects the modulated optical signal to the mode-locking LD to lock the optical pulses, and a radio frequency (RF) locking signaling unit which injects the electric signal to the modulator.
Abstract:
The 3R regeneration system for a retiming, reshaping, and reamplifying an optical signal includes: first and second input ports in which a connected optical signal is input; an interferometer including first and second branches formed on a substrate, split at a common input node, combined at a common output node, semiconductor optical amplifiers in each of the first and second branches, the first branch being connected to the first input port, and the common input node being connected to the second input port; a self-pulsating laser diode monolithically integrated with the interferometer between one of the first input port and the first branch, and the second input port and the common input node on the substrate, receiving an optical signal, and outputting the optical signal regenerated by optical injection locking; and an output port connected to the common output node.
Abstract:
Provided are a THz-wave generation/detection module and a device including the same, which increase heating efficiency and are miniaturized. The module includes a photomixer chip, a lens, a PCB, and a package. The photomixer chip includes an active layer, an antenna, and a plurality of electrode pads. The lens is disposed on the photomixer chip. The PCB includes a plurality of solder balls connected to the electrode pads, under the photomixer chip. The package surrounds a bottom and side of the PCB, and dissipates heating of the active layer, which is transferred from the electrode pad of the photomixer chip to the PCB, to outside.
Abstract:
Provided is a multichannel transmitter optical module which includes a plurality of light source units configured to generate light, a plurality of an electro-absorption modulators (EAMs) configured to modulate the generated light to an optical signal through a radio frequency (RF) signal, a plurality of RF transmission lines configured to apply the RF signal to the EAMs, and a combiner configured to combine the modulated optical signal. The RF transmission lines are connected to the EAMs in a traveling wave (TW) electrode manner. The multichannel transmitter optical module has alleviated crosstalk and is compactly integrated to have a small size.
Abstract:
Provided are a distributed feedback laser diode and a manufacturing method thereof. The distributed feedback laser diode includes a first area having a first grating layer disposed in a longitudinal direction, a second area disposed adjacent to the first area and having a second grating layer disposed in the longitudinal direction, and an active layer disposed over the first and second areas. Coupling coefficients of the first and second grating layers are made different in the first and second areas by a selective area growth method. The distributed feedback laser diode includes grating layers each having an asymmetric coefficient and is implemented within an optimal range capable of obtaining both a high front facet output and stable single mode characteristics. Thus, high manufacturing yield and low manufacturing cost can be achieved.