Abstract:
Methods and apparatus for acquiring and verifying a code used by a base station. Acquisition time is reduced and circuitry simplified by performing Phase I and Phase II acquisitions in series, but in parallel with Phase III acquisition and verification, which are done in series. Phase III code acquisition is done by despreading the input signal using each of the possible codes in a code group. An estimation of the frequency offset between the base station and the terminal's local reference is used to correct the phase of the despread signals, which are coherently and non-coherently integrated. The largest accumulated value corresponds to the code used by the base station. The code is verified by despreading the received signal, applying a frequency correction, and demodulating. The demodulated output is a series of symbols, and a count of these symbols verifies the acquired code.
Abstract:
A method and system for handling or processing out-of-order TCP segments in a wireless system may comprise at least one of: placing a first TCP segment received by a wireless network processor in a host buffer and having a mapping between a TCP sequence number and a corresponding buffer address. It may be determined whether a second TCP segment received by the wireless network processor is one of an in-order TCP segment or an out-of-order TCP segment. If the second received TCP segment is an out-of-order TCP segment, then control information associated with at least the second TCP segment may be stored locally on the wireless network processor. The out-of-order TCP segment may be placed in a portion of the host buffer.
Abstract:
A communication device may include one or more circuits in an integrated transmitter and receiver that includes a transmit path and a receive path. The transmit path may include an I processing baseband transmit path and a Q processing baseband transmit path. The receive path may include an I processing baseband receive path and a Q processing baseband receive path. The one or more circuits may enable sharing a first common filter by the I processing baseband transmit path and the I processing baseband receive path. The one or more circuits may also enable sharing a second common filter by the Q processing baseband transmit path and the Q processing baseband receive path. The first common filter and the second common filter are independently programmable to adjust a phase and/or a gain of the said first common filter, and/or a phase and/or a gain of the second common filter.
Abstract:
In a data communication system, a transmitter of a modem, for example, uses a single scrambler to operate in a data communication mode and in a non-data mode. During the data communication mode the scrambler is used to scramble data for communication by the transmitter. During the non-data mode, the scrambler is used to generate a non-data mode signal for communication by the scrambler. The modem may be an ADSL modem, for example, in which case the data communication mode is SHOWTIME while the non-data mode may be Q-mode.
Abstract:
The present invention relates to a mobile set integrating a memory efficient data storage system for the real time recording of voice conversations, data transmission and the like. The data recorder has the capacity to selectively choose the most relevant time frames of a conversation for recording, while discarding time frames that only occupy additional space in memory without holding any conversational data. The invention executes a series of logic steps on each signal including a voice activity detector step, frame comparison step, and sequential recording step. A mobile set having a modified architecture for performing the methods of the present invention is also disclosed.
Abstract:
This invention provides colored noise detection algorithm(s). This colored noise detection algorithm(s) may be implemented with a multi-branch equalizer processing module that enables interference cancellation when colored noise is associated with received radio frequency (RF) bursts. The noise discriminator identifies when the radio frequency (RF) bursts have white noise or colored noise associated with them. Alternatively the noise discriminator may be able to determine and enable interference cancellation in response to an interference-limited received RF burst as opposed to a noise-limited received RF burst. The multi-branch equalizer improves the signal-to-noise ratio by improving the equalization with a second branch operable to be trained based upon known training sequences and at least partially re-encoded data bits.
Abstract:
A method to perform DC compensation on a Radio Frequency (RF) burst transmitted between a servicing base station and a wireless terminal in a cellular wireless communication system that first receives the RF burst modulated according to either a first or second modulation format. Samples from the RF burst, or taken from the training sequence, are produced and averaged to produce a DC offset estimate. The DC offset estimate is then subtracted from each of the samples. The modulation format of RF burst may then be identified from the samples. Depending on the identified modulation format, the DC offset estimate may be re-added to the samples when a particular modulation format is identified as the modulation format of the RF burst. This decision is made based on how well various components within the wireless terminal perform DC offset compensation.
Abstract:
A method for calibrating a phase locked loop begins by determining a gain offset of a voltage controlled oscillator of the phase locked loop. The processing then continues by adjusting current of a charge pump of the phase locked loop based on the gain offset.
Abstract:
A RFIC includes a die and a package. The die contains a radio frequency (RF) input/output (I/O) section, an RF-to-baseband conversion section, and a baseband processing section. The package includes a plurality of connections for connecting to the die. The die is positioned within the package to minimize adverse affects of parasitics components of coupling the RFIO section to an antenna. The positioning of the die within the package may be offset from the center of the package and/or positioned at the edge of the package.
Abstract:
A linear high powered integrated circuit transmitter includes an up-conversion module, a plurality of power amplifiers, balanced integrated circuit coupling, and a combining circuit. The up-conversion module is operably coupled to produce a differential up-converted signal by mixing one or more local oscillations with a low intermediate frequency (IF) signal. The balanced integrated circuit coupling couples the plurality of power amplifiers to the up-conversion module such that the power amplifiers amplify the up-converted signal to produce a plurality of amplified radio frequency (RF) signals. The combining circuit is operably coupled to combine the plurality of amplified RF signals to produce a transmit RF signal.