Abstract:
A method (300) of additively manufacturing a composite part (102) is disclosed. The method (300) comprises depositing a segment (120) of a continuous flexible line (106) along a print path (122). The continuous flexible line (106) comprises a non-resin component (108) and a thermosetting resin component (110) that is not fully cured. The method (300) further comprises, while advancing the continuous flexible line (106) toward the print path (122), delivering a predetermined or actively determined amount of curing energy (118) at least to a portion (124) of the segment (120) of the continuous flexible line (106) at a controlled rate after the segment (120) of the continuous flexible line (106) is deposited along the print path (122) to at least partially cure at least the portion (124) of the segment (120) of the continuous flexible line (106).
Abstract:
A method of fabricating a connecting rod (6) out of composite material using three-dimensional fabric of woven reinforcing fibers, the connecting rod (6) extending in a main direction. The method comprises the steps of: cutting out one or more base pieces (7, 8) from a three-dimensional fabric; cutting out one or more reinforcing pieces (9, 10) from a three-dimensional fabric; installing the various pieces (7, 8, 9, 10) on a support in order to shape them; securing the various pieces (7, 8, 9, 10) to one another by stitching (12, 13, 14, 15) using reinforcing fibers in order to constitute a reinforcing fiber preform; installing the preform on a mandrel; and injecting resin into the preform and polymerizing the resin.
Abstract:
A mounting unit for mounting a solar panel on a roof includes a base having a first flange and a second flange that extend laterally from the base and a mounting surface positioned above the base via walls that connect the mounting surface and the base. The mounting surface is couplable with the solar panel to elevate and orient the solar panel above a surface of the roof. The mounting unit also includes a flexible membrane material that is coupled with the first flange of the base and that extends laterally therefrom. The mounting unit further includes an adhesive or tape that is applied to an underside of the second flange so that the second flange is free of the flexible membrane material. The flexible membrane material is couplable with the roof and the adhesive or tape is adherable to the roof to secure the mounting unit to the roof.
Abstract:
A flexible composite suitable for use in a knife, pick, bullet and fragment-resistant article comprising (i) a first zone comprising fabric but no resin, the first first zone comprising from 10 to 90 percent of the total thickness of the composite, (ii) a third zone comprising an elastomeric or thermoplastic resin but no fabric, the third zone comprising from 0 to 50 percent of the total thickness of the composite and (iii) a second zone, located between the first and third zones, comprising fabric and an elastomeric or thermoplastic resin, the second zone comprising from 10 to 90 percent of the total thickness of the composite.
Abstract:
A composite rod that has subsequently been reduced to its tow or whose supporting matrix has been modified by any of various means, including heat, can easily be redirected around an arc to manufacture a longitudinal structural element having a termination or support.
Abstract:
A composite powder including particles and each particle including a plurality of reinforcement elements contained within a matrix. The composite powder may be applied in a powder bed to form a multilayered composite component. Each layer being formed by a composite powder bed. As each layer is applied, the reinforcement elements of the powder particles may be moved into alignment with an electromagnetic field.
Abstract:
Apparatus and methods of stretch-forming pre-preg material are provided. In one example embodiment, a variable material stretch-forming apparatus comprises a stretch-forming assembly configured to stretch-form at least one section of a sheet of pre-preg material to a longer length than at least one other section of the sheet of pre-preg material before the sheet of pre-preg material is applied to a tool.
Abstract:
Embodiments of the present application generally provide for wind turbine blade spar caps comprising composite materials prepared using a low viscosity resin system and a high density fabric and methods for their manufacture. In particular embodiment, the low viscosity resin system has a viscosity in the range of about 1 to about 100 centipoises at a temperature in the range of about 0° C. to about 125° C. during the preparation of the composite material. By using low viscosity resin systems, composite materials have been prepared having a fiber volume fraction of greater than about 65% and a composite modulus of greater than 48000 MPa.
Abstract:
A process for fabricating an integrated panel structures and the structures thereby fabricated are provided with first and second stiffeners positioned on a base skin so that the stiffeners intersect at respective intersecting regions. First and second fiber-reinforced resin-composite overlapping layers are provided on the first and second stiffeners so that at least lateral regions thereof are laminated to a corresponding region of the base skin. The base skin and the overlapping layers may be assembled with the first and second stiffeners to form a panel preform which may then be subjected to curing conditions so as to co-cure all previously uncured components and thereby form an integrated composite panel structure with mutually intersecting first and second stiffeners.
Abstract:
Disclosed herein are composites as well as methods of making these composites. The composite may, for example, be used as light-weight, high-strength structural members and wall panels. In some embodiments, the composites can be prepared from a light-weight assembly using simple procedures. Also disclosed herein are assemblies for preparing the composites.