Abstract:
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Structures having features with different depth can be formed thereby in a single etching step.
Abstract:
A method of making a micromirror unit is provided. In accordance with the method, a micromirror unit is made from a material substrate having a multi-layer structure composed of silicon layers and at least one intermediate layer. The resulting micromirror unit includes a mirror forming base, a frame and a torsion bar. The method includes the following steps. First, a pre-torsion bar is formed by subjecting one of the silicon layers to etching. The obtained pre-torsion bar is rendered smaller in thickness than the mirror forming base and is held in contact with the intermediate layer. Then, the desired torsion bar is obtained by removing the intermediate layer contacting with the pre-torsion bar.
Abstract:
The present invention provides a micromechanical or microoptomechanical structure produced by a process comprising defining the structure in a single-crystal silicon layer separated by an insulator layer from a substrate layer; selectively etching the single crystal silicon layer; depositing and etching a polysilicon layer on the insulator layer, with remaining polysilicon forming mechanical elements of the structure; metalizing a backside of the structure; and releasing the formed structure.
Abstract:
A structure forming method according to an aspect is a structure forming method for forming a first hole and a second hole having width smaller than width of the first hole in a substrate with dry etching and forming a structure. The structure forming method includes forming an etching mask on the substrate, etching a portion of the etching mask overlapping a first hole forming region where the first hole is formed, etching a portion of the etching mask overlapping a second hole forming region where the second hole is formed, and performing the dry etching of the substrate using the etching mask as a mask.
Abstract:
Disclosed herein are methods of making micropores of a desired height and/or width between two isotropic wet etched features in a substrate which comprises single-level isotropic wet etching the two features using an etchant and a mask distance that is less than 2× a set etch depth. Also disclosed herein are methods using the micropores and microfluidic devices comprising the micropores.
Abstract:
Disclosed herein are methods of immobilizing a particle which comprise focusing the flow of a sample fluid containing the particle into a virtual channel which flows towards an unoccupied hydrodynamic trap in a microfluidic channel such that the particle flows into the hydrodynamic trap and becomes immobilized therein. Also disclosed are microfluidic devices which comprise at least one microchannel having at least one hydrodynamic trap, at least one focusing fluid inlet, said focusing fluid inlet is upstream of the hydrodynamic trap such that a focusing fluid introduced therein results in a virtual channel of a sample fluid when present which preferentially flows toward the hydrodynamic trap.
Abstract:
The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
Abstract:
Disclosed herein are methods of making micropores of a desired height and/or width between two isotropic wet etched features in a substrate which comprises single-level isotropic wet etching the two features using an etchant and a mask distance that is less than 2× a set etch depth. Also disclosed herein are methods using the micropores and microfluidic devices comprising the micropores.
Abstract:
The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
Abstract:
A method of etching the whole width of a substrate to expose buried features is disclosed. The method includes etching a face of a substrate across its width to achieve substantially uniform removal of material; illuminating the etched face during the etch process; applying edge detection techniques to light reflected or scattered from the face to detect the appearances of buried features; and modifying the etch in response to the detection of the buried feature. An etching apparatus for etching substrate across its width to expose buried is also disclosed.