Abstract:
The present invention has an object to provide a cold cathode field-emission electron gun with low aberration, to thereby provide a high-brightness electron gun even in the case of a large current. The present invention provides a field-emission electron gun which extracts an electron beam from a cathode and converges the extracted electron beam, the field-emission electron gun including: a magnetic field lens which is provided such that the cathode is disposed inside of a magnetic field of the lens; and an extraction electrode for extracting electrons from the cathode, the extraction electrode being formed into a cylindrical shape without an aperture structure. The present invention can provide an electron gun having a function of converging an electron beam using a magnetic field, the electron gun which is capable of reducing an incidental electrostatic lens action and has small aberration and high brightness.
Abstract:
A charged particle beam column package includes an assembly (e.g., comprising a plurality of layers, which can have a component coupled to one of the layers), and at least one deflector between an extractor and aperture of the assembly. Further, at least one of the layers has interconnects thereon.
Abstract:
The invention provides an apparatus and method of switching more than one bias voltage within an electron beam tube in order to achieve electron beam cutoff. The invention is particularly useful for high-perveance electron tubes in which a large change in focus-electrode-to-cathode or anode-cathode voltage might otherwise be needed to achieve cutoff. In one embodiment of the invention, the cathode and anode bias voltages are both switched by magnitudes well within the capabilities of standard high-voltage switches to achieve beam cutoff.
Abstract:
The present invention provides an electron beam apparatus for irradiating a sample with primary electron beams to detect secondary electron beams generated from a surface of the sample by the irradiation for evaluating the sample surface. In the electron beam apparatus, an electron gun has a cathode for emitting primary electron beams. The cathode includes a plurality of emitters for emitting primary electron beams, arranged apart from one another on a circle centered at an optical axis of a primary electro-optical system. The plurality of emitters are arranged such that when the plurality of emitters are projected onto a straight line parallel with a direction in which the primary electron beams are scanned, resulting points on the straight line are spaced at equal intervals.
Abstract:
System that focuses electron beams in an electro-static area to a laminar flow of electrons with uniform distribution of current density and extraordinary demagnification includes a body that defines a boundary for an electric field, a field-forming cathode electrode system, a focusing electrode system, and at least one anode electrode system in the electro-static section and a second electric field-free section including an adjustable screen system arranged in an interior of the body. The field-forming near-cathode electrode system includes a cathode electrically connected to a flat part and a curvilinear part electrically connected to a cylindrical part. The anode electrode system includes an opening part, an anode electrically connected to a flat part and a curvilinear part electrically connected to a cylindrical part which is similar or identical to and symmetrical with the cathode electrode system. The system parameters are calculated and created due to the CGMR conceptual method.
Abstract:
Discharge factors existing on a surface of an electrode or an insulator forming an electron gun are removed efficiently and effectively, thus simply and easily enhancing the withstand voltage property of the electron gun. A conditioning processing device of an electron gun is provided with a voltage supply section, a voltage adjusting section for adjusting the output voltage of the voltage supply section, and a current detection section for detecting a leakage current flowing between the electrodes of the electron gun. Further, there are attached a vacuum exhaust section for adjusting the inside of the electron gun in a reduced pressure condition and a pressure detection section. Further, it is arranged that a personal computer (PC), for example, performs data processing based on the leakage current detected by the current detection section or comparison with a reference value thereof to control the voltage, which is applied between the electrodes from the voltage supply section via a connection section, via the voltage adjustment section.
Abstract:
A thermal field emission cathode which is employed in an electron microscope, a critical dimension examine tool, an electron beam lithograph machine, an electron beam tester and other electron beam related systems as an electron source is disclosed. Embodiments disclose changing coating shape, coating position and shorten emitter length to extend the lifetime of the field emission cathode.
Abstract:
A charged particle beam column package includes an assembly (e.g., comprising a plurality of layers, which can have a component coupled to one of the layers), and at least one deflector between an extractor and aperture of the assembly. Further, at least one of the layers has interconnects thereon.
Abstract:
The present invention provides an electron beam apparatus for irradiating a sample with primary electron beams to detect secondary electron beams generated from a surface of the sample by the irradiation for evaluating the sample surface. In the electron beam apparatus, an electron gun has a cathode for emitting primary electron beams. The cathode includes a plurality of emitters for emitting primary electron beams, arranged apart from one another on a circle centered at an optical axis of a primary electro-optical system. The plurality of emitters are arranged such that when the plurality of emitters are projected onto a straight line parallel with a direction in which the primary electron beams are scanned, resulting points on the straight line are spaced at equal intervals.
Abstract:
The present invention provides an electron beam apparatus for irradiating a sample with primary electron beams to detect secondary electron beams generated from a surface of the sample by the irradiation for evaluating the sample surface. In the electron beam apparatus, an electron gun has a cathode for emitting primary electron beams. The cathode includes a plurality of emitters for emitting primary electron beams, arranged apart from one another on a circle centered at an optical axis of a primary electro-optical system. The plurality of emitters are arranged such that when the plurality of emitters are projected onto a straight line parallel with a direction in which the primary electron beams are scanned, resulting points on the straight line are spaced at equal intervals.