Abstract:
Optical systems can emit train(s) of light pulses onto objects to derive a distance between the light source and the object. Achieving meter or centimeter resolution may require very short light pulses. It is not trivial to design a circuit that can generate narrow current pulses for driving a diode that emits the light pulses. An improved driver circuit has a pre-charge path comprising one or more inductive elements and a fire path comprising the diode. Switches in the driver circuit are controlled with predefined states during different intervals to pre-charge current in the one or more inductive elements prior to flowing current through the fire path to pulse the diode.
Abstract:
Optical pulse source for generating optical supercontinuum pulses, comprising an optical pump laser operable to generate optical pump pulses at a pump pulse repetition rate Rf; a nonlinear optical element comprising a microstructured optical fiber arranged to receive the optical pump pulses and configured to spectrally broaden the optical pump pulses to generate optical supercontinuum pulses; an optical modulator provided between the optical pump laser and the microstructured optical fiber and operable to selectively control the launch of optical pump pulses into the microstructured optical fiber at a variable, reduced repetition rate Rr=Rf/N, wherein N is a positive integer, to thereby control the repetition rate of optical supercontinuum pulses generated within the nonlinear optical element; and wherein the optical pulse source is configured to provide a plurality of different repetition rates and nominally identical spectral broadening for the different repetition rates.
Abstract:
A system includes a first actuation module coupled to a first actuatable apparatus of an optical source, the first actuatable apparatus being altered by the first actuation module to adjust the spectral feature of the pulsed light beam; a second actuation module coupled to a second actuatable apparatus of the optical source, the second actuatable apparatus being altered by the second actuation module to adjust the spectral feature of the pulsed light beam; and a control system configured to receive an indication regarding the operating state of the first actuatable apparatus; and send a signal to the second actuation module to adjust the spectral feature of the pulsed light beam to either: prevent the first actuatable apparatus from saturating based on the operating state of the first actuatable apparatus, or desaturate the first actuatable apparatus if the first actuatable apparatus is saturated.
Abstract:
A system and method for engineering loss in a physical system by steering parameters of the physical system to the vicinity of an exceptional point is disclosed. In the vicinity of an exceptional point, localization of the fields helps to enhance any linear or nonlinear processes. As examples loss-induced transparency in the intracavity field intensities of coupled resonators, loss-induced suppression and enhancement of thermal nonlinearity in coupled resonators and loss-induced suppression and revival of Raman lasing in whispering-gallery-microcavities are demonstrated.
Abstract:
Methods, systems, and apparatus, for optical communication. One optical assembly includes a Fabry-Perot (FP) laser diode; a first polarization controller (PC) coupled to the FP laser diode; a circulator having four ports, a first port coupled to the first PC; an optical fiber coupled at a first end to a second port of the circulator; a second PC coupled to a third port of the circulator; an optical amplifier coupled to the second PC and a fourth port of the circulator; a wavelength division multiplexer (WDM) filter coupled to the second end of the optical fiber; a splitter having at least three ends coupled at a first end to the WDM; and a Faraday rotator mirror (FRM) coupled directly or indirectly to a second end of the splitter.
Abstract:
A system is provided for combining laser light sources. The system includes: a stack of laser diode bar arrays, comprising two or more laser diode bar arrays, each laser diode bar array having multiple laser diodes; a multimode optical fiber; and a plurality of optical elements disposed between the stack of laser diode bar arrays and the multimode optical fiber, configured to direct light from the stack of laser diode bar arrays to the multimode optical fibers, the plurality of optical elements further including: a plurality of fast-axis collimating (FAC) lenses, wherein at least one FAC lens of the plurality of FAC lenses corresponds to each laser diode bar array. At least one FAC lens of the plurality of FAC lenses is misaligned with respect to the corresponding laser diode bar array. At least one misaligned FAC lens has at least one of a translational position and a orientation relative to its corresponding laser diode bar array different from another FAC lens of the plurality of FAC lenses relative to its corresponding laser diode bar array.
Abstract:
A wafer is formed with a plurality of division lines on a front surface of a single crystal substrate having an off angle and formed with devices in a plurality of regions partitioned by the division lines. The wafer is processed by setting a numerical aperture (NA) of a focusing lens for focusing a pulsed laser beam so that a value obtained by dividing the numerical aperture (NA) by a refractive index (N) of the single crystal substrate falls within the range from 0.05 to 0.2. The pulsed laser beam is applied along the division lines, with a focal point of the pulsed laser beam positioned at a desired position from a back surface of the single crystal substrate, so as to form shield tunnels each composed of a pore and a pore-shielding amorphous portion along the division lines from the focal point positioned inside the single crystal substrate.
Abstract:
A generation unit generates adjustment information to adjust a first clock indicating a timing of illumination of a laser beam to scan on a screen, based on a scanning position to be scanned by the laser beam.On the basis of the adjustment information, adjustment unit adjusts the first clock to a second clock different from the first clock. Then, in synchronization with the second clock, the laser beam is allowed to illuminate as a pixel. This may be applicable to a projection apparatus for projecting an image on the screen, for example.
Abstract:
An integrated optical modulator and laser device includes a laser section, a modulator section for modulating the intensity of a laser beam produced by the laser section, and a separation section located between the laser section and the modulator section. The laser section includes a first anode electrode and a first cathode electrode. The modulator section includes a second anode electrode and a second cathode electrode. A lower cladding layer is integral to the laser section, the modulator section, and the separation section and the width of the lower cladding layer is narrowest in the separation section.