Abstract:
A bio-fluid test strip includes a fluid receiving area and a contact pad area for interfacing with a fluid sensing device. The test strip includes a fluid sensing electrodes and a first temperature sensing resistor in the fluid receiving area. The test strip further includes a second temperature sensing resistor in the contact pad area. The first and second temperature sensing resistors together provide an indication of the temperature difference between the fluid sensing area and ambience.
Abstract:
An integrated circuit (IC) package includes a die pad and an IC die secured on the die pad. The IC die had outer edges aligned with outer edges of the die pad. An encapsulating material body surrounds the die pad and IC die. Leads extend outwardly from the encapsulating material body and are coupled to the IC die. Each lead has an upper surface coplanar with an upper surface of the IC die. The die pad has a lower surface exposed through the encapsulating material body, and has a thickness greater than a thickness of each of the plurality of leads.
Abstract:
An image sensor device may include an interconnect layer having an opening extending therethrough, an image sensor IC within the opening and having an image sensing surface, and an IR filter aligned with the image sensing surface. The image sensor device may include an encapsulation material laterally surrounding the image sensor IC and filling the opening, and a flexible interconnect layer coupled to the interconnect layer opposite the image sensing surface.
Abstract:
A method of making an electronic device may include positioning an integrated circuit (IC) die on an upper surface of a grid array substrate having connections on a lower surface thereof and coupling respective bond pads of the IC die to the grid array with bond wires. The method may also include forming a first encapsulating layer over the IC die and bond wires and positioning a heat spreader on the substrate above the first encapsulating layer after forming the first encapsulating layer. The method may further include forming a second encapsulating layer over the first encapsulating layer and embedding the heat spreader in the second encapsulating layer.
Abstract:
An image sensor device may include an interconnect layer, an image sensor IC on the interconnect layer, and a barrel adjacent the interconnect layer and having first electrically conductive traces. The image sensor device may include a liquid crystal focus cell carried by the barrel and having cell layers, and second electrically conductive contacts. A pair of adjacent cell layers may have different widths. The image sensor device may include an electrically conductive adhesive body coupling at least one of the second electrically conductive contacts to a corresponding one of the first electrically conductive traces.
Abstract:
An image sensor device may include an interconnect layer having an opening extending therethrough, an image sensor IC within the opening and having an image sensing surface, and an IR filter aligned with the image sensing surface. The image sensor device may include an encapsulation material laterally surrounding the image sensor IC and filling the opening, and a flexible interconnect layer coupled to the interconnect layer opposite the image sensing surface.
Abstract:
An electronic device may include an integrated circuit (IC), electrically conductive connectors coupled to the IC, and a heat sink layer adjacent the IC and opposite the electrically conductive connectors. The electronic device may include an encapsulation material surrounding the IC and the electrically conductive connectors, a redistribution layer having electrically conductive traces coupled to the electrically conductive connectors, a stiffener between the heat sink layer and the redistribution layer, and a fan-out component between the heat sink layer and the redistribution layer and being in the encapsulation material.
Abstract:
An optical detection sensor functions as a proximity detection sensor that includes an optical system and a selectively transmissive structure. Electromagnetic radiation such as laser light can be emitted through a transmissive portion of the selectively transmissive structure. A reflected beam can be detected to determine the presence of an object. The sensor is formed by encapsulating the transmissive structure in a first encapsulant body and encapsulating the optical system in a second encapsulant body. The first and second encapsulant bodies are then joined together. In a wafer scale assembling the structure resulting from the joined encapsulant bodies is diced to form optical detection sensors.
Abstract:
An electronic device is formed by depositing polyimide on a glass substrate. A conductive material is deposited on the polyimide and patterned to form electrodes and signal traces. Remaining portions of the electronic device are formed on the polyimide. A second polyimide layer is then formed on the first polyimide layer. The glass substrate is then removed, exposing the electrodes and the top surface of the electronic device.
Abstract:
An optical electronic package includes transmitting chip and a receiving chip fixed to a wafer. A transparent encapsulation structure is formed by a transparent plate and a transparent encapsulation block that are formed over the transmitter chip and at least a portion of the receiver chip, with the transparent encapsulation block embedding the transmitter chip. An opaque encapsulation block extends over the transparent plate and includes an opening that reveals a front area of the transparent plate. The front area is situated above an optical transmitter of the transmitting chip and is offset laterally relative to an optical sensor of the receiving chip.